
UnifyFS Documentation
Release 1.1

Kathryn Mohror, Adam Moody, Sarp Oral, Feiyi Wang, Hyogi Sim, Swen Boehm, Michael Brim, Jenna DeLozier, Ross Miller, Danielle Sikich, Joseph Moore, Ned Bass, Tony Hutter, Hariharan Devarajan, Cameron Stanavige, Celso Mendes, Craig Steffen

Jan 19, 2024

USER GUIDE

1 Overview 1
1.1 High Level Design . 1
1.2 UnifyFS Citation . 2
1.3 UnifyFS Videos . 2

2 Definitions 5
2.1 Job . 5
2.2 Run or Job Step . 5

3 Assumptions and Semantics 7
3.1 System Requirements . 7
3.2 Application Behavior . 7
3.3 Consistency Model . 8
3.4 Additional File System Behavior Considerations . 10

4 Limitations and Workarounds 13
4.1 General Limitations . 13
4.2 MPI-IO Limitations . 14
4.3 ROMIO Limitations . 15
4.4 HDF5 Limitations . 17
4.5 PnetCDF Limitations . 17

5 Build UnifyFS 21
5.1 Build UnifyFS and Dependencies with Spack . 21
5.2 Build Dependencies with Spack, Build UnifyFS with Autotools . 22
5.3 Build Dependencies with Bootstrap and Build UnifyFS with Autotools 23
5.4 Configure Options . 24

6 Integrate the UnifyFS API 27
6.1 Include the UnifyFS Header . 27
6.2 Mounting . 28
6.3 Unmounting . 28

7 Link with the UnifyFS library 29
7.1 Static link . 29
7.2 Dynamic link . 29
7.3 LD_PRELOAD . 30

8 UnifyFS Configuration 31
8.1 System Configuration File (unifyfs.conf) . 31
8.2 Environment Variables . 33

i

8.3 Command Line Options . 33

9 Run UnifyFS 35
9.1 Start UnifyFS . 35
9.2 Stop UnifyFS . 36
9.3 Resource Manager Job Integration . 37
9.4 Transferring Data In and Out of UnifyFS . 37
9.5 UnifyFS LS Executable . 39

10 Example Programs 41
10.1 Locations of Examples . 41
10.2 Running the Examples . 42
10.3 Producer-Consumer Workflow . 44

11 UnifyFS API for I/O Middleware 45
11.1 Library API Purpose . 45
11.2 Library API Concepts . 45
11.3 Library API Types . 46
11.4 Example Library API Usage . 48

12 UnifyFS Dependencies 53
12.1 Required . 53
12.2 Optional . 53

13 UnifyFS Error Codes 55

14 VerifyIO: Determine UnifyFS Compatibility 57
14.1 Recorder and VerifyIO . 57
14.2 VerifyIO Guide . 57

15 Contributing Guide 63
15.1 Getting Started . 63
15.2 Reporting Bugs . 63
15.3 Suggesting Enhancements . 64
15.4 Pull Requests . 64
15.5 Testing . 64
15.6 Documentation . 65

16 Developer Documentation 67

17 Style Guides 69
17.1 Coding Conventions . 69
17.2 Commit Message Format . 69

18 Testing Guide 71
18.1 Unit Tests . 71
18.2 Integration Tests . 78

19 Wrapper Guide 89
19.1 unifyfs_check_fns Tool . 89
19.2 Building the GOTCHA List . 90
19.3 Commands to Build Files . 90

20 Adding RPC Functions With Margo Library 91
20.1 Common . 91
20.2 Server . 92

ii

20.3 Client . 92

21 Indices and tables 95

iii

iv

CHAPTER

ONE

OVERVIEW

UnifyFS is a user-level file system under active development that supports shared file I/O over distributed storage on
HPC systems, e.g., node-local burst buffers. With UnifyFS, applications can write to fast, scalable, node-local burst
buffers as easily as they do to the parallel file system. UnifyFS is designed to support common I/O workloads such as
checkpoint/restart and other bulk-synchronous I/O workloads typically performed by HPC applications.

Because the UnifyFS file system is implemented at user-level, the file system is visible only to applications linked with
the UnifyFS client library. A consequence of this is that traditional file system tools (ls, cd, etc.) installed by system
administrators cannot act on files in a UnifyFS file system because they are not linked against the UnifyFS client library.
The lifetime of a UnifyFS file system is the duration of the execution of the UnifyFS server processes, which is typically
for the duration of an HPC job. When the servers exit, the UnifyFS file system terminates. Users must copy files that
need to be persisted beyond the lifetime of the job from UnifyFS to a permanent file system. UnifyFS provides an API
and a utility to perform these copies.

1.1 High Level Design

1

UnifyFS Documentation, Release 1.1

This section provides a high level design of UnifyFS. UnifyFS presents a shared namespace (e.g., /unifyfs as a mount
point) to all compute nodes in a job allocation. There are two main components of UnifyFS: the UnifyFS library and
the UnifyFS server.

The UnifyFS library is linked into the user application. The library intercepts I/O calls from the application and sends
I/O requests for UnifyFS files on to the UnifyFS server. The library forwards I/O requests for all other files on to the
system. The UnifyFS library uses ECP GOTCHA as its primary mechanism to intercept I/O calls. The user application
is linked with the UnifyFS client library and perhaps a high-level I/O library, like HDF5, ADIOS, or PnetCDF.

A UnifyFS server process runs on each compute node in the job allocation. The UnifyFS server handles the I/O requests
from the UnifyFS library. The UnifyFS server uses ECP Mochi to communicate with user application processes and
server processes on other nodes.

1.2 UnifyFS Citation

We recommend that you use this as the primary citation for UnifyFS as well as a reference for further details on the
UnifyFS architecture and semantics:

Michael Brim, Adam Moody, Seung-Hwan Lim, Ross Miller, Swen Boehm, Cameron Stanavige, Kathryn
Mohror, Sarp Oral, “UnifyFS: A User-level Shared File System for Unified Access to Distributed Local
Storage,” 37th IEEE International Parallel & Distributed Processing Symposium (IPDPS 2023), St. Pe-
tersburg, FL, May 2023.

1.3 UnifyFS Videos

1.3.1 Quickstart

Quick overview on what UnifyFS is and how to use it.

1.3.2 ECP Tutorial

More in-depth recording of the problems UnifyFS solves and a how-to using a pre-1.0 beta version.

UnifyFS Tutorial Slides - ECP 2022

Download PDF.

2 Chapter 1. Overview

https://github.com/LLNL/GOTCHA
https://mochi.readthedocs.io/en/latest

UnifyFS Documentation, Release 1.1

Changes since above ECP 2022 Tutorial:

• Video 30:04 | Slide 19 - Variants boostsys and preload have since been added.

• Video 31:08 | Slide 22 - OpenSSL is also a dependency that was missed on this slide.

• Video 41:10 | Slide 48 - User Guide url starts with https, not http.

For full changes since the pre-1.0 beta version of UnifyFS used in the May 2022 tutorial, see the UnifyFS release notes.

1.3. UnifyFS Videos 3

https://github.com/LLNL/UnifyFS/releases

UnifyFS Documentation, Release 1.1

4 Chapter 1. Overview

CHAPTER

TWO

DEFINITIONS

This section defines some terms used throughout the document.

2.1 Job

A set of commands that is issued to the resource manager and is allocated a set of nodes for some duration

2.2 Run or Job Step

A single application launch of a group of one or more application processes issued within a job

5

UnifyFS Documentation, Release 1.1

6 Chapter 2. Definitions

CHAPTER

THREE

ASSUMPTIONS AND SEMANTICS

In this section, we provide assumptions we make about the behavior of applications that use UnifyFS and about the file
system semantics of UnifyFS.

3.1 System Requirements

The system requirements to run UnifyFS are:

• Compute nodes must be equipped with local storage device(s) that UnifyFS can use for storing file data, e.g.,
SSD or RAM.

• The system must support the ability for UnifyFS user-level server processes to run concurrently with user appli-
cation processes on compute nodes.

3.2 Application Behavior

UnifyFS is specifically designed to support the bulk-synchronous I/O pattern that is typical in HPC applications, e.g.,
checkpoint/restart or output dumps. In bulk-synchronous I/O, I/O operations occur in separate write and read phases,
and files are not read and written simultaneously. For example, files are written during checkpointing (a write phase) and
read during recovery/restart (a read phase). Additionally, parallel writes and reads to shared files occur systematically,
where processes access computable, regular offsets of files, e.g., in strided or segmented access patterns, with ordering
of potential conflicting updates enforced by inter-process communication. This behavior is in contrast to other I/O
patterns that may perform random, small writes and reads or overlapping writes without synchronization.

UnifyFS offers the best performance for applications that exhibit the bulk synchronous I/O pattern. While UnifyFS does
support deviations from this pattern, the performance might be slower and the user may have to take additional steps
to ensure correct execution of the application with UnifyFS. For more information on this topic, refer to the section on
commit consistency semantics in UnifyFS.

7

UnifyFS Documentation, Release 1.1

3.3 Consistency Model

The UnifyFS file system does not support strict POSIX consistency semantics. (Please see Chen et al., HPDC 2021 for
more details on different file system consistency semantics models.) Instead, UnifyFS supports two different consis-
tency models: commit consistency semantics when a file is actively being modified; and lamination semantics when the
file is no longer being modified by the application. These two consistency models provide opportunities for UnifyFS
to provide better performance for the I/O operations of HPC applications.

3.3.1 Commit Consistency Semantics in UnifyFS

Commit consistency semantics require explicit commit operations to be performed before updates to a
file are globally visible. We chose commit consistency semantics for UnifyFS because it is sufficient
for correct execution of typical HPC applications that adhere to the bulk-synchronous I/O pattern, and it
enables UnifyFS to provide better performance than with strict POSIX semantics. For example, because we
assume that applications using UnifyFS will not execute concurrent modifications to the same file offset,
UnifyFS does not have to employ locking to ensure sequential access to file regions. This assumption
allows us to cache file modifications locally which greatly improves the write performance of UnifyFS.

The use of synchronization operations are required for applications that exhibit I/O accesses that deviate
from the bulk-synchronous I/O pattern. There are two types of synchronization that are required for cor-
rect execution of parallel I/O on UnifyFS: local synchronization and inter-process synchronization. Here,
local synchronization refers to synchronization operations performed locally by a process to ensure that
its updates to a file are visible to other processes. For example, a process may update a region of a file
and then execute fflush() so that a different process can read the updated file contents. Inter-process
synchronization refers to synchronization operations that are performed to enforce ordering of conflicting
I/O operations from multiple processes. These inter-process synchronizations occur outside of normal
file I/O operations and typically involve inter-process communication, e.g., with MPI. For example, if two
processes need to update the same file region and it is important to the outcome of the program that the up-
dates occur in a particular order, then the program needs to enforce this ordering with an operation like an
MPI_Barrier() to be sure that the first process has completed its updates before the next process begins
its updates.

There are several methods by which applications can adhere to the synchronization requirements of Uni-
fyFS.

• Using MPI-IO. The (MPI-IO) interface requirements are a good match for the consistency model
of UnifyFS. Specifically, the MPI-IO interface requires explicit synchronization in order for updates
made by processes to be globally visible. An application that utilizes the MPI-IO interface correctly
will already adhere to the requirements of UnifyFS.

• Using HDF5 and other parallel I/O libraries. Most parallel I/O libraries hide the synchroniza-
tion requirements of file systems from their users. For example, parallel (HDF5) implements the
synchronization required by the MPI-IO interface so users do not need to perform any explicit syn-
chronization operations in the code.

• With explicit synchronization. If an application does not use a compliant parallel I/O library
or the developer wants to perform explicit synchronization, local synchronization can be achieved
through adding explicit flush operations with calls to fflush(), close(), or fsync() in the appli-
cation source code, or by supplying the client.write_sync configuration parameter to UnifyFS
on startup, which will cause an implicit flush operation after every write (note: use of the client.
write_sync mode can significantly slow down write performance). In this case, inter-process syn-
chronization is still required for applications that perform conflicting updates to files.

During a write phase, a process can deviate from the bulk-synchronous I/O pattern and read any byte in a
file, including remote data that has been written by processes executing on remote compute nodes in the

8 Chapter 3. Assumptions and Semantics

https://dl.acm.org/doi/10.1145/3431379.3460637
https://www.mpi-forum.org/docs/
https://www.hdfgroup.org/

UnifyFS Documentation, Release 1.1

job. However, the performance will differ based on which process wrote the data that is being read:

• If the bytes being read were written by the same process that is reading the bytes, UnifyFS offers the
fastest performance and no synchronization operations are needed. This kind of access is typical in
some I/O libraries, e.g., HDF5, where file metadata may be updated and read by the same process.
(Note: to obtain the performance benefit for this case, one must set the client.local_extents
configuration parameter.)

• If the bytes being read were written by a process executing on the same compute node as the reading
process, UnifyFS can offer slightly slower performance than the first case and the application must
introduce synchronization operations to ensure that the most recent data is read.

• If the bytes being read were written by a process executing on a different compute node than the
reading process, then the performance is slower than the first two cases and the application must
introduce synchronization operations to ensure that the most recent data is read.

In summary, reading the local data (which has been written by processes executing on the same compute
node) will always be faster than reading remote data.

Note that, as we discuss above, commit semantics also require inter-process synchronization for potentially
conflicting write accesses. If an application does not enforce sequential ordering of file modifications
during a write phase, e.g., with MPI synchronization, and multiple processes write concurrently to the
same file offset or to an overlapping region, the result is undefined and may reflect the result of a mixture
of the processes’ operations to that offset or region.

The VerifyIO tool can be used to determine whether an application is correctly synchronized.

3.3.2 Lamination Consistency Semantics in UnifyFS

The other consistency model that UnifyFS employs is called “lamination semantics” which is intended to
be applied once a file is done being modified at the end of a write phase of an application. After a file
is laminated, it becomes permanently read-only and its data is accessible across all the compute nodes in
the job without further synchronization. Once a file is laminated, it cannot be further modified, except for
being renamed or deleted.

A typical use case for lamination is for checkpoint/restart. An application can laminate checkpoint files
after they have been successfully written so that they can be read by any process on any compute node in
the job in a restart operation. To laminate a file, an application can simply call chmod() to remove all the
write bits, after its write phase is completed. When write bits of a file are removed, UnifyFS will laminate
the file. A typical checkpoint write operation with UnifyFS will look like:

fd = open("checkpoint1.chk", O_WRONLY)
write(fd, <checkpoint data>, <len>)
close(fd)
chmod("checkpoint1.chk", 0444)

We plan for future versions of UnifyFS to support different methods for laminating files, such as a config-
uration option that supports laminating all files on close().

We define the laminated consistency model to enable certain optimizations while supporting the typical
requirements of bulk-synchronous I/O. Recall that for bulk-synchronous I/O patterns, reads and writes
typically occur in distinct phases. This means that for the majority of the time, processes do not need to read
arbitrary bytes of a file until the write phase is completed, which in practice is when the file is done being
modified and closed and can be safely made read-only with lamination. For applications in which processes
do not need to access file data modified by other processes before lamination, UnifyFS can optimize write
performance by buffering all metadata and file data for processes locally, instead of performing costly

3.3. Consistency Model 9

UnifyFS Documentation, Release 1.1

exchanges of metadata between compute nodes on every write. Also, since file contents cannot change
after lamination, aggressive caching may be used during the read phase with minimal locking.

3.3.3 File System Consistency Behavior

The following summarizes the behavior of UnifyFS under our two consistency models.

Behavior before Lamination (Commit Consistency)

• open|close: A process may open/close a file multiple times.

• write: A process may write to any part of a file. If two processes write to the same location concur-
rently (i.e., without inter-process synchronization to enforce ordering), the result is undefined.

• read: A process may read bytes it has written. Reading other bytes is invalid without explicit syn-
chronization operations.

• rename: A process may rename a file that is not being actively modified.

• truncate: A process may truncate a file. Truncation is a synchronizing operation.

• unlink: A process may delete a file.

Behavior after Lamination (Laminated Consistency)

• open|close: A process may open/close a laminated file multiple times.

• write: All writes to laminated files are invalid - no file modifications are permitted.

• read: A process may read any byte in the laminated file.

• rename: A process may rename a laminated file.

• truncate: Truncation of laminated files is invalid - no file modifications are permitted.

• unlink: A process may delete a laminated file.

3.4 Additional File System Behavior Considerations

The additional behavior of UnifyFS can be summarized as follows.

• UnifyFS creates a shared file system namespace across all compute nodes in a job, even if an application process
is not running on all compute nodes.

• The UnifyFS shared file system namespace is valid for the lifetime of its server processes, and thus exists across
multiple application runs within a job.

• UnifyFS transparently intercepts system level I/O calls of applications and I/O libraries. As such, UnifyFS can
be easily coupled with other I/O middleware such as SymphonyFS, high-level I/O libraries such as HDF5, or
checkpoint libraries.

• UnifyFS stores file data exclusively in node-local storage. No data is automatically persisted to stable storage
like a parallel file system. When the data needs to be persisted to an external file system, users can use the unifyfs
utility and its data staging at file system termination support.

• UnifyFS can also be used with checkpointing libraries like SCR or VeloC to move data to stable storage period-
ically.

• The UnifyFS file system will be empty at job start. A user job must populate the file system with any initial data
by running client applications or using the data staging support of the unifyfs utility.

10 Chapter 3. Assumptions and Semantics

https://code.ornl.gov/techint/SymphonyFS
https://www.hdfgroup.org/
https://github.com/llnl/scr
https://github.com/ECP-VeloC/VELOC

UnifyFS Documentation, Release 1.1

3.4.1 Failure Behavior

• In the event of a compute node failure or node-local storage device failure, all file data from the processes running
on the failed node will be lost.

• In the event of the failure of a UnifyFS server process, all file data from the client processes assigned to that
server process (typically on the same compute node) will be lost.

• In the event of application process failures when the UnifyFS server processes remain running, the file data can
be retrieved by the local UnifyFS server or a remote UnifyFS server.

• The UnifyFS team plans to improve the reliability of UnifyFS in the event of failures using redundancy scheme
implementations available from the VeloC project as part of a future release.

3.4. Additional File System Behavior Considerations 11

https://github.com/ECP-VeloC/VELOC

UnifyFS Documentation, Release 1.1

12 Chapter 3. Assumptions and Semantics

CHAPTER

FOUR

LIMITATIONS AND WORKAROUNDS

4.1 General Limitations

4.1.1 Data Consistency

Overlapping write operations or simultaneous read and write operations require proper synchronization when using
UnifyFS. This includes ensuring updates to a file are visible to other processes as well as inter-process communication
to enforce ordering of conflicting I/O operations. Refer to the section on commit consistency semantics in UnifyFS for
more detail.

In short, for a process to read data written by another process, the reader must wait for the writer to first flush any data it
has written to the UnifyFS servers. After the writer flushes its data, there must be a synchronization operation between
the writer and the reader processes, such that the reader does not attempt to read newly written data until the writer has
completed its flush operation.

UnifyFS can be configured to flush data to servers at various points. A common mechanism to flush data is for the
writer process to call fsync() or fflush(). Also, by default, data is flushed when a file is closed with close() or
fclose().

UnifyFS can be configured to behave more “POSIX like” by flushing newly written data to the server during every
write operation. To do this, one can set UNIFYFS_CLIENT_WRITE_SYNC=ON. UNIFYFS_CLIENT_WRITE_SYNC=ON
can decrease write performance as the number of data flush operations may be more than necessary.

4.1.2 File Locking

UnifyFS does not support file locking, and calls to fcntl() and flock() are not intercepted by UnifyFS. Any calls
fall through to the underlying operating system, which should report the corresponding file descriptor as invalid. If not
detected, an application will encounter data corruption if it depends on file locking semantics for correctness. Tracing
application I/O calls with VerifyIO can help determine whether any file locking calls are used.

4.1.3 Directory Operations

UnifyFS does not support directory operations.

13

UnifyFS Documentation, Release 1.1

4.2 MPI-IO Limitations

4.2.1 Data Consistency

When using MPI-I/O without atomic file consistency, the MPI standard requires the application to manage data consis-
tency by calling MPI_File_sync(). After data has been written, the writer must call MPI_File_sync(). There
must then be a synchronization operation between the writer and reader processes. Finally, the reader must call
MPI_File_sync() after its synchronization operation with the writer. A common approach is for the application
to execute a “sync-barrier-sync” construct as shown below:

Listing 1: Sync-barrier-sync Construct

MPI_File_sync() //flush newly written bytes from MPI library to file system
MPI_Barrier() //ensure all ranks have finished the previous sync
MPI_File_sync() //invalidate read cache in MPI library

Note: The “barrier” in “sync-barrier-sync” can be replaced by a send-recv or certain collectives that are guaranteed
to be synchronized. The synchronization operation does not even need to be an MPI call. See the “Note on the third
step” in the VerifyIO README for more information.

Proper data consistency synchronization is also required between MPI-I/O calls that imply write or read op-
erations. For example, MPI_File_set_size() and MPI_File_preallocate() act as write operations, and
MPI_File_get_size() acts as a read operation. There may be other MPI-I/O calls that imply write or read oper-
ations.

Both MPI_File_open() and MPI_File_close() implicitly call MPI_File_sync().

Relaxed MPI_File_sync semantics

Data consistency in UnifyFS is designed to be compatible with MPI-I/O application-managed file consistency se-
mantics. An application that follows proper MPI-I/O file consistency semantics using MPI_File_sync() should run
correctly on UnifyFS, provided that the MPI_File_sync() implementation flushes newly written data to UnifyFS.

On POSIX-compliant parallel file systems like Lustre, many applications can run correctly even when they are missing
sufficient file consistency synchronization. In contrast, to run correctly on UnifyFS, an application should make all
MPI_File_sync() calls as required by the MPI standard.

Note: It may be labor intensive to identify and correct all places within an application where file synchronization calls
are required. The VerifyIO tool can assist developers in this effort.

In the current UnifyFS implementation, it is actually sufficient to make a single call to MPI_File_sync() followed by
a synchronizing call like MPI_Barrier(), e.g.:

MPI_File_sync()
MPI_Barrier()

Assuming that MPI_File_sync() calls fsync(), then information about any newly written data will be transferred
to the UnifyFS servers. The MPI_Barrier() then ensures that fsync() will have been called by all clients that may
have written data. After the MPI_Barrier(), a process may read data from UnifyFS that was written by any other
process before that other process called MPI_File_sync(). A second call to MPI_File_sync() is not (currently)
required in UnifyFS.

14 Chapter 4. Limitations and Workarounds

https://github.com/uiuc-hpc/Recorder/tree/pilgrim/tools/verifyio#note-on-the-third-step

UnifyFS Documentation, Release 1.1

Furthermore, if MPI_File_sync() is known to be a synchronizing collective, then a separate synchronization opera-
tion like MPI_Barrier() is not required. In this case, an application might simplify to just the following:

MPI_File_sync()

Having stated those exceptions, it is best practice to adhere to the MPI standard and execute a full sync-barrier-sync con-
struct. There exist potential optimizations such that future implementations of UnifyFS may require the full sequence
of calls.

4.3 ROMIO Limitations

4.3.1 Data Consistency

In ROMIO, MPI_File_sync() calls fsync() and MPI_File_close() calls close(), each of which flush infor-
mation about newly written data to the UnifyFS servers. When using ROMIO, an application having appropriate
“sync-barrier-sync” constructs as required by the MPI standard will run correctly on UnifyFS.

ROMIO Synchronizing Flush Hint

Although MPI_File_sync() is an MPI collective, it is not required to be synchronizing. One can configure ROMIO
such that MPI_File_sync() is also a synchronizing collective. To enable this behavior, one can set the following
ROMIO hint through an MPI_Info object or within a ROMIO hints file:

romio_synchronizing_flush true

This configuration can be useful to applications that only call MPI_File_sync() once rather than execute a full sync-
barrier-sync construct.

This hint was added starting with the ROMIO version available in the MPICH v4.0 release.

ROMIO Data Visibility Hint

Starting with the ROMIO version available in the MPICH v4.1 release, the read-only hint
romio_visibility_immediate was added to inform the caller as to whether it is necessary to call MPI_File_sync
to manage data consistency.

One can query the MPI_Info associated with a file. If this hint is defined and if its value is true, then the underlying file
system does not require the sync-barrier-sync construct in order for a process to read data written by another process.
Newly written data is visible to other processes as soon as the writer process returns from its write call. If the value of
the hint is false, or if the hint is not defined in the MPI_Info object, then a sync-barrier-sync construct is required.

When using UnifyFS, an application must call MPI_File_sync() in all situations where the MPI standard requires it.
However, since a sync-barrier-sync construct is costly on some file systems, and because POSIX-complaint file systems
may not require it for correctness, one can use this hint to conditionally call MPI_File_sync() only when required by
the underlying file system.

4.3. ROMIO Limitations 15

https://wordpress.cels.anl.gov/romio/2008/09/26/system-hints-hints-via-config-file

UnifyFS Documentation, Release 1.1

4.3.2 File Locking

ROMIO requires file locking with fcntl() to implement various functionality. Since fcntl() is not supported in
UnifyFS, one must avoid any ROMIO features that require file locking.

MPI-I/O Atomic File Consistency

ROMIO uses fcntl() to implement atomic file consistency. One cannot use atomic mode when using UnifyFS.
Provided an application still executes correctly without atomic mode, one can disable it by calling:

MPI_File_set_atomicity(fh, 0)

Atomic mode is often disabled by default in ROMIO.

Data Sieving

ROMIO uses fcntl() to support its data sieving optimization. One must disable ROMIO data sieving when using
UnifyFS. To disable data sieving, one can set the following ROMIO hints:

romio_ds_read disable
romio_ds_write disable

These hints can be set in the MPI_Info object when opening a file, e.g.,:

MPI_Info info;
MPI_Info_create(&info);
MPI_Info_set(info, "romio_ds_read", "disable");
MPI_Info_set(info, "romio_ds_write", "disable");
MPI_File_open(comm, filename, amode, info, &fh);
MPI_Info_free(&info);

or the hints may be listed in a ROMIO hints file, e.g.,:

>>: cat romio_hints.txt
romio_ds_read disable
romio_ds_write disable

>>: export ROMIO_HINTS="romio_hints.txt"

MPI-I/O Shared File Pointers

ROMIO uses file locking to support MPI-I/O shared file pointers. One cannot use MPI-I/O shared file pointers when
using UnifyFS. Functions that use shared file pointers include:

MPI_File_write_shared()
MPI_File_read_shared()
MPI_File_write_ordered()
MPI_File_read_ordered()

16 Chapter 4. Limitations and Workarounds

https://wordpress.cels.anl.gov/romio/2008/09/26/system-hints-hints-via-config-file

UnifyFS Documentation, Release 1.1

4.4 HDF5 Limitations

HDF5 uses MPI-I/O. In addition to restrictions that are specific to HDF5, one must follow any restrictions associated
with the underlying MPI-I/O implementation. In particular, if the MPI library uses ROMIO for its MPI-I/O implemen-
tation, one should adhere to any limitations noted above for both ROMIO and MPI-I/O in general.

4.4.1 Data Consistency

In HDF5, H5Fflush() calls MPI_File_sync() and H5Fclose() calls MPI_File_close(). When running HDF5
on ROMIO or on other MPI-I/O implementations where these MPI routines flush newly written data to UnifyFS, one
must invoke these HDF5 functions to properly manage data consistency.

When using HDF5 with the MPI-I/O driver, for a process to read data written by another process without closing the
HDF file, the writer must call H5Fflush() after writing its data. There must then be a synchronization operation
between the writer and reader processes. Finally, the reader must call H5Fflush() after the synchronization operation
with the writer. This executes the sync-barrier-sync construct as required by MPI. For example:

H5Fflush(...)
MPI_Barrier(...)
H5Fflush(...)

If MPI_File_sync() is a synchronizing collective, as with when enabling the romio_synchronizing_flush MPI-
I/O hint, then a single call to H5Fflush() suffices to accomplish the sync-barrier-sync construct:

H5Fflush(...)

HDF5 FILE_SYNC

Starting with the HDF5 v1.13.2 release, HDF can be configured to call MPI_File_sync() after ev-
ery HDF collective write operation. This configuration is enabled automatically if MPI-I/O defines the
romio_visibility_immediate hint as false. One can also enable this option manually by setting the environ-
ment variable HDF5_DO_MPI_FILE_SYNC=1. Enabling this option can decrease write performance since it may induce
more file flush operations than necessary.

4.5 PnetCDF Limitations

PnetCDF applications can utilize UnifyFS, and the semantics of the PnetCDF API align well with UnifyFS constraints.

PnetCDF uses MPI-IO to read and write files. In addition to any restrictions required when using UnifyFS with
PnetCDF, one must follow any recommendations regarding UnifyFS and the underlying MPI-IO implementation.

4.4. HDF5 Limitations 17

https://parallel-netcdf.github.io/wiki/pnetcdf-api.pdf

UnifyFS Documentation, Release 1.1

4.5.1 Data Consistency

PnetCDF parallelizes access to NetCDF files using MPI. An MPI communicator is passed as an argument when opening
a file. Any collective call in PnetCDF is global across the process group associated with the communicator used to
open the file.

PnetCDF follows the data consistency model defined by MPI-IO. Specifically, from its documentation about PnetCDF
data consistency:

Note: PnetCDF follows the same parallel I/O data consistency as MPI-IO standard.

If users would like PnetCDF to enforce a stronger consistency, they should add NC_SHARE flag when open/create the
file. By doing so, PnetCDF adds MPI_File_sync() after each MPI I/O calls.

If NC_SHARE is not set, then users are responsible for their desired data consistency. To enforce a stronger consistency,
users can explicitly call ncmpi_sync(). In ncmpi_sync(), MPI_File_sync() and MPI_Barrier() are called.

Upon inspection of the implementation of the PnetCDF v1.12.3 release, the following PnetCDF functions include the
following calls:

ncmpio_file_sync
- calls MPI_File_sync(ncp->independent_fh)
- calls MPI_File_sync(ncp->collective_fh)
- calls MPI_Barrier

ncmpio_sync
- calls ncmpio_file_sync

ncmpi__enddef
- calls ncmpio_file_sync if NC_doFsync (NC_SHARE)

ncmpio_enddef
- calls ncmpi__enddef

ncmpio_end_indep_data
- calls MPI_File_sync if NC_doFsync (NC_SHARE)

ncmpio_redef
- does *NOT* call ncmpio_file_sync

ncmpio_close
- calls ncmpio_file_sync if NC_doFsync (NC_SHARE)
- calls MPI_File_close (MPI_File_close calls MPI_File_sync by MPI standard)

If a program must read data written by another process, PnetCDF users must do one of the following when using
UnifyFS:

1) Add explicit calls to ncmpi_sync() after writing and before reading.

2) Set UNIFYFS_CLIENT_WRITE_SYNC=1, in which case each POSIX write operation invokes a flush.

3) Use NC_SHAREwhen opening files so that the PnetCDF library invokes MPI_File_sync() and MPI_Barrier()
calls after its MPI-IO operations.

Of these options, it is recommended that one add ncmpi_sync() calls where necessary. Setting
UNIFYFS_CLIENT_WRITE_SYNC=1 is convenient since one does not need to change the application, but it may
have a larger impact on performance. Opening or creating a file with NC_SHARE may work for some applications, but it

18 Chapter 4. Limitations and Workarounds

https://github.com/Parallel-NetCDF/PnetCDF/blob/e47596438326bfa7b9ed0b3857800d3a0d09ff1a/doc/README.consistency.md
https://github.com/Parallel-NetCDF/PnetCDF/blob/e47596438326bfa7b9ed0b3857800d3a0d09ff1a/doc/README.consistency.md

UnifyFS Documentation, Release 1.1

depends on whether the PnetCDF implementation internally calls MPI_File_sync() at all appropriate places, which
is not guaranteed.

A number of PnetCDF calls invoke write operations on the underlying file. In addition to the ncmpi_put_* collection of
calls that write data to variables or attributes, ncmpi_enddef updates variable definitions, and it can fill variables with
default values. Users may also explicitly fill variables by calling ncmpi_fill_var_rec(). One must ensure necessary
ncmpi_sync() calls are placed between any fill and write operations in case they happen to write to overlapping regions
of a file.

Note that ncmpi_sync() calls MPI_File_sync() and MPI_Barrier(), but it does not call MPI_File_sync() again
after calling MPI_Barrier(). To execute a full sync-barrier-sync construct, one technically must call ncmpi_sync()
twice:

// to accomplish sync-barrier-sync
ncmpi_sync(...) // call MPI_File_sync and MPI_Barrier
ncmpi_sync(...) // call MPI_File_sync again

When using UnifyFS, a single call to ncmpi_sync() should suffice since UnifyFS does not (currently) require the
second call to MPI_File_sync() as noted above.

4.5. PnetCDF Limitations 19

UnifyFS Documentation, Release 1.1

20 Chapter 4. Limitations and Workarounds

CHAPTER

FIVE

BUILD UNIFYFS

This section describes how to build UnifyFS and its dependencies, and what configure time options are available.

There are three build options:

• build both UnifyFS and dependencies with Spack,

• build the dependencies with Spack, but build UnifyFS with autotools

• build the dependencies with a bootstrap script, and build UnifyFS with autotools

5.1 Build UnifyFS and Dependencies with Spack

One may install UnifyFS and its dependencies with Spack. If you already have Spack, make sure you have the latest
release. If you use a clone of the Spack develop branch, be sure to pull the latest changes.

Warning: Thallium, Mochi Suite, and SDS Repo Users

The available and UnifyFS-compatible Mochi-Margo versions that are in the mochi-margo Spack package may not
match up with the latest/default versions in the Mochi Suite, SDS Repo, and mochi-thallium Spack packages. It
is likely that a different version of mochi-margo will need to be specified in the install command of UnifyFS (E.g.:
spack install unifyfs ^mochi-margo@0.13.1).

5.1.1 Install Spack

$ git clone https://github.com/spack/spack
$ # create a packages.yaml specific to your machine
$. spack/share/spack/setup-env.sh

Use Spack’s shell support to add Spack to your PATH and enable use of the spack command.

21

https://github.com/spack/spack
https://spack.readthedocs.io/en/latest/getting_started.html#add-spack-to-the-shell

UnifyFS Documentation, Release 1.1

5.1.2 Build and Install UnifyFS

$ spack install unifyfs
$ spack load unifyfs

If the most recent changes on the development branch (‘dev’) of UnifyFS are desired, then do spack install
unifyfs@develop.

Include or remove variants with Spack when installing UnifyFS when a custom build is desired. Run spack info
unifyfs for more information on available variants.

Table 1: UnifyFS Build Variants

Variant Command (spack install <package>) Default Description
Auto-mount unifyfs+auto-mount True Enable transparent mounting
Boostsys unifyfs+boostsys False Have Mercury use Boost
Fortran unifyfs+fortran True Enable Fortran support
PMI unifyfs+pmi False Enable PMI2 support
PMIx unifyfs+pmix False Enable PMIx support
Preload unifyfs+preload False Enable LD_PRELOAD library support
SPath unifyfs+spath True Normalize relative paths

Attention: The initial install could take a while as Spack will install build dependencies (autoconf, automake, m4,
libtool, and pkg-config) as well as any dependencies of dependencies (cmake, perl, etc.) if you don’t already have
these dependencies installed through Spack or haven’t told Spack where they are locally installed on your system
(i.e., through a custom packages.yaml). Run spack spec -I unifyfs before installing to see what Spack is
going to do.

5.2 Build Dependencies with Spack, Build UnifyFS with Autotools

One can install the UnifyFS dependencies with Spack and build UnifyFS with autotools. This is useful if one needs to
modify the UnifyFS source code between builds. Take advantage of Spack Environments to streamline this process.

5.2.1 Build the Dependencies

Once Spack is installed on your system (see above), the UnifyFS dependencies can then be installed.

$ spack install gotcha
$ spack install mochi-margo@0.13.1 ^libfabric fabrics=rxm,sockets,tcp
$ spack install spath~mpi

Tip: Run spack install --only=dependencies unifyfs to install all UnifyFS dependencies without installing
UnifyFS itself.

Keep in mind this will also install all the build dependencies and dependencies of dependencies if you haven’t already
installed them through Spack or told Spack where they are locally installed on your system via a packages.yaml.

22 Chapter 5. Build UnifyFS

https://spack.readthedocs.io/en/latest/build_settings.html#external-packages
https://spack.readthedocs.io/en/latest/environments.html
https://spack.readthedocs.io/en/latest/build_settings.html#external-packages

UnifyFS Documentation, Release 1.1

5.2.2 Build UnifyFS

Download the latest UnifyFS release from the Releases page or clone the develop branch (‘dev’) from the UnifyFS
repository https://github.com/LLNL/UnifyFS.

Load the dependencies into your environment and then configure and build UnifyFS from its source code directory.

$ spack load gotcha
$ spack load argobots
$ spack load mercury
$ spack load mochi-margo
$ spack load spath
$
$ gotcha_install=$(spack location -i gotcha)
$ spath_install=$(spack location -i spath)
$
$./autogen.sh # skip if using release tarball
$./configure --prefix=/path/to/install --with-gotcha=${gotcha_install} --with-spath=$
→˓{spath_install}
$ make
$ make install

Alternatively, UnifyFS can be configured using CPPFLAGS and LDFLAGS:

$./configure --prefix=/path/to/install CPPFLAGS="-I${gotcha_install}/include -I{spath_
→˓install}/include" LDFLAGS="-L${gotcha_install}/lib64 -L${spath_install}/lib64

To see all available build configuration options, run ./configure --help after ./autogen.sh has been run.

5.3 Build Dependencies with Bootstrap and Build UnifyFS with Auto-
tools

Download the latest UnifyFS release from the Releases page or clone the develop branch (‘dev’) from the UnifyFS
repository https://github.com/LLNL/UnifyFS.

5.3.1 Build the Dependencies

UnifyFS requires MPI, GOTCHA, Margo and OpenSSL. References to these dependencies can be found on the UnifyFS
Dependencies page.

A bootstrap.sh script in the UnifyFS source distribution downloads and installs all dependencies. Simply run the script
in the top level directory of the source code.

$./bootstrap.sh

Note: UnifyFS requires automake version 1.15 or newer in order to build.

Before building the UnifyFS dependencies, the bootstrap.sh script will check the system’s current version of automake
and attempt to build the autotools suite if an older version is detected.

5.3. Build Dependencies with Bootstrap and Build UnifyFS with Autotools 23

https://github.com/LLNL/UnifyFS/releases
https://github.com/LLNL/UnifyFS
https://github.com/LLNL/UnifyFS/releases
https://github.com/LLNL/UnifyFS
https://github.com/LLNL/UnifyFS/blob/dev/bootstrap.sh

UnifyFS Documentation, Release 1.1

5.3.2 Build UnifyFS

After bootstrap.sh installs the dependencies, it prints the commands one needs to execute to build UnifyFS. As an
example, the commands may look like:

$ export PKG_CONFIG_PATH=$INSTALL_DIR/lib/pkgconfig:$INSTALL_DIR/lib64/pkgconfig:$PKG_
→˓CONFIG_PATH
$ export LD_LIBRARY_PATH=$INSTALL_DIR/lib:$INSTALL_DIR/lib64:$LD_LIBRARY_PATH
$./autogen.sh # skip if using release tarball
$./configure --prefix=/path/to/install CPPFLAGS=-I/path/to/install/include LDFLAGS="-L/
→˓path/to/install/lib -L/path/to/install/lib64"
$ make
$ make install

Alternatively, UnifyFS can be configured using --with options:

$./configure --prefix=/path/to/install --with-gotcha=$INSTALL_DIR --with-spath=$INSTALL_
→˓DIR

To see all available build configuration options, run ./configure --help after ./autogen.sh has been run.

Note: On Cray systems, the detection of MPI compiler wrappers requires passing the following flags to the configure
command: MPICC=cc MPIFC=ftn

5.4 Configure Options

When building UnifyFS with autotools, a number of options are available to configure its functionality.

5.4.1 Fortran

To use UnifyFS in Fortran applications, pass the --enable-fortran option to configure. Note that only GCC Fortran
(i.e., gfortran) is known to work with UnifyFS. There is an open ifort_issue with the Intel Fortran compiler as well as
an xlf_issue with the IBM Fortran compiler.

Note: UnifyFS requires GOTCHA when Fortran support is enabled

5.4.2 GOTCHA

GOTCHA is the preferred method for I/O interception with UnifyFS, but it is not available on all platforms. If GOTCHA
is not available on your target system, you can omit it during UnifyFS configuration by using the --without-gotcha
configure option. Without GOTCHA, static linker wrapping is required for I/O interception, see Link with the UnifyFS
library.

Warning: UnifyFS requires GOTCHA for dynamic I/O interception of MPI-IO functions. If UnifyFS is configured
using --without-gotcha, support will be lost for MPI-IO (and as a result, HDF5) applications.

24 Chapter 5. Build UnifyFS

https://github.com/LLNL/UnifyFS/issues/300
https://github.com/LLNL/UnifyFS/issues/304

UnifyFS Documentation, Release 1.1

5.4.3 HDF5

UnifyFS includes example programs that use HDF5. If HDF5 is not available on your target system, it can be omitted
during UnifyFS configuration by using the --without-hdf5 configure option.

5.4.4 PMI2/PMIx Key-Value Store

When available, UnifyFS uses the distributed key-value store capabilities provided by either PMI2 or PMIx. To en-
able this support, pass either the --enable-pmi or --enable-pmix option to configure. Without PMI support, a
distributed file system accessible to all servers is required.

5.4.5 SPATH

The spath library can be optionally used to normalize relative paths (e.g., ones containing “.”, “..”, and extra or trailing
“/”) and enable the support of using relative paths within an application. To enable, use the --with-spath configure
option or provide the appropriate CPPFLAGS and LDFLAGS at configure time.

5.4.6 Transparent Mounting for MPI Applications

MPI applications written in C or C++ may take advantage of the UnifyFS transparent mounting capability. With
transparent mounting, calls to unifyfs_mount() and unifyfs_unmount() are automatically performed during
MPI_Init() and MPI_Finalize(), respectively. Transparent mounting always uses /unifyfs as the namespace
mountpoint. To enable transparent mounting, use the --enable-mpi-mount configure option.

5.4.7 Intercepting I/O Calls from Shell Commands

An optional preload library can be used to intercept I/O function calls made by shell commands, which allows one to
run shell commands as a client to interact with UnifyFS. To build this library, use the --enable-preload configure
option. At run time, one should start the UnifyFS server as normal. One must then set the LD_PRELOAD environment
variable to point to the installed library location within the shell. For example, a bash user can set:

$ export LD_PRELOAD=/path/to/install/lib/libunifyfs_preload_gotcha.so

One can then interact with UnifyFS through subsequent shell commands, such as:

$ touch /unifyfs/file1
$ cp -pr /unifyfs/file1 /unifyfs/file2
$ ls -l /unifyfs/file1
$ stat /unifyfs/file1
$ rm /unifyfs/file1

The default mountpoint used is /unifyfs. This can be changed by setting the UNIFYFS_PRELOAD_MOUNTPOINT
environment variable.

Note: Due to the variety and variation of I/O functions that may be called by different commands, there is no guarantee
that a given invocation is supported under UnifyFS semantics. This feature is experimental, and it should be used at
one’s own risk.

5.4. Configure Options 25

UnifyFS Documentation, Release 1.1

26 Chapter 5. Build UnifyFS

CHAPTER

SIX

INTEGRATE THE UNIFYFS API

This section describes how to use the UnifyFS API in an application.

Transparent Mount Caveat

MPI applications that take advantage of the transparent mounting feature (through configuring with
--enable-mpi-mount or with +auto-mount through Spack) do not need to be modified in any way in order
to use UnifyFS. Move on to the Link with the UnifyFS library section next as this step can be skipped.

Attention: Fortran Compatibility

unifyfs_mount and unifyfs_unmount are usable with GFortran. There is a known ifort_issue with the Intel
Fortran compiler as well as an xlf_issue with the IBM Fortran compiler. Other Fortran compilers are currently
unknown.

If using fortran, when installing UnifyFS with Spack, include the +fortran variant, or configure UnifyFS with the
--enable-fortran option if building manually.

6.1 Include the UnifyFS Header

In C or C++ applications, include unifyfs.h. See writeread.c for a full example.

Listing 1: C

#include <unifyfs.h>

In Fortran applications, include unifyfsf.h. See writeread.f90 for a full example.

27

https://github.com/LLNL/UnifyFS/issues/300
https://github.com/LLNL/UnifyFS/issues/304
https://github.com/LLNL/UnifyFS/blob/dev/examples/src/writeread.c
https://github.com/LLNL/UnifyFS/blob/dev/examples/src/writeread.f90

UnifyFS Documentation, Release 1.1

Listing 2: Fortran

include 'unifyfsf.h'

6.2 Mounting

UnifyFS implements a file system in user space, which the system has no knowledge about. The UnifyFS library
intecepts and handles I/O calls whose path matches a prefix that is defined by the user. Calls corresponding to matching
paths are handled by UnifyFS and all other calls are forwarded to the original I/O routine.

To use UnifyFS, the application must register the path that the UnifyFS library should intercept by making a call to
unifyfs_mount. This must be done once on each client process, and it must be done before the client process attempts
to access any UnifyFS files.

For instance, to use UnifyFS on all path prefixes that begin with /unifyfs this would require a:

Listing 3: C

int rc = unifyfs_mount("/unifyfs", rank, rank_num);

Listing 4: Fortran

call UNIFYFS_MOUNT('/unifyfs', rank, size, ierr);

Here, /unifyfs is the path prefix for UnifyFS to intercept. The rank parameter specifies the MPI rank of the calling
process. The size parameter specifies the number of MPI ranks in the user job.

6.3 Unmounting

When the application is done using UnifyFS, it should call unifyfs_unmount.

Listing 5: C

unifyfs_unmount();

Listing 6: Fortran

call UNIFYFS_UNMOUNT(ierr);

28 Chapter 6. Integrate the UnifyFS API

CHAPTER

SEVEN

LINK WITH THE UNIFYFS LIBRARY

This section describes how to link an application with the UnifyFS library. The UnifyFS library contains symbols for
the UnifyFS API, like unifyfs_mount, as well as wrappers for I/O routines, like open, write, and close. In the examples
below, replace <unifyfs> with the path to your UnifyFS install.

7.1 Static link

For a static link, UnifyFS utilizes the --wrap feature of the ld command. One must specify a --wrap option for every
I/O call that is wrapped, for which there are many. To make this easier, UnifyFS installs a unifyfs-config script that one
should invoke to specify those flags, e.g.,

$ mpicc -o test_write \
`<unifyfs>/bin/unifyfs-config --pre-ld-flags` \
test_write.c \
`<unifyfs>/bin/unifyfs-config --post-ld-flags`

7.2 Dynamic link

A build of UnifyFS includes two different shared libraries. Which one you should link against depends on your ap-
plication. If you wish to take advantage of the UnifyFS auto-mount feature (assuming the feature was enabled at
compile-time), then you should link against libunifyfs_mpi_gotcha.so. If you are not building an MPI-enabled
application, or if you want explicit control over when UnifyFS filesystem is mounted and unmounted, then link against
libunifyfs_gotcha.so. In this case, you will also have to add calls to unifyfs_mount and unifyfs_unmount in
the appropriate locations in your code. See Integrate the UnifyFS API .

To intercept I/O calls using gotcha, use the following syntax to link an application:

29

UnifyFS Documentation, Release 1.1

7.2.1 C

For code that uses the auto-mount feature:

$ mpicc -o test_write test_write.c \
-L<unifyfs>/lib -lunifyfs_mpi_gotcha

For code that explicitly calls unifyfs_mount and unifyfs_unmount:

$ mpicc -o test_write test_write.c \
-I<unifyfs>/include -L<unifyfs>/lib -lunifyfs_gotcha

Note the use of the -I option so that the compiler knows where to find the unifyfs.h header file.

7.2.2 Fortran

For code that uses the auto-mount feature:

$ mpif90 -o test_write test_write.F \
-L<unifyfs>/lib -lunifyfs_mpi_gotcha

For code that explicitly calls unifyfs_mount and unifyfs_unmount:

$ mpif90 -o test_write test_write.F \
-I<unifyfs>/include -L<unifyfs>/lib -lunifyfsf -lunifyfs_gotcha

Note the use of the -I option to specify the location of the unifyfsf.h header. Also note the use of the unifyfsf
library. This library provides the Fortran bindings for the unifyfs_mount and unifyfs_unmount functions.

7.3 LD_PRELOAD

In the case where an application doesn’t need to be rebuilt in order to use UnifyFS (e.g., files paths are set wth argu-
ments/configs), LD_PRELOAD can be used at runtime to allow for UnifyFS interception of file I/O.

$ srun -N2 -n8 --export=ALL,LD_PRELOAD=$UNIFYFS_LIB/libunifyfs_mpi_gotcha.so␣
→˓myApplication

30 Chapter 7. Link with the UnifyFS library

CHAPTER

EIGHT

UNIFYFS CONFIGURATION

Here, we explain how users can customize the runtime behavior of UnifyFS. In particular, UnifyFS provides the fol-
lowing ways to configure:

• Configuration file: $INSTALL_PREFIX/etc/unifyfs/unifyfs.conf

• Environment variables

• Command line options to unifyfsd

All configuration settings have corresponding environment variables, but only certain settings have command line op-
tions. When defined via multiple methods, the command line options have the highest priority, followed by environment
variables, and finally config file options from unifyfs.conf.

The system-wide configuration file is used by default when available. However, users can specify a custom location for
the configuration file using the -f command-line option to unifyfsd (see below). There is a sample unifyfs.conf
file in the installation directory under etc/unifyfs/. This file is also available in the extras directory in the source
repository.

The unified method for providing configuration control is adapted from CONFIGURATOR. Configuration settings are
grouped within named sections, and each setting consists of a key-value pair with one of the following types:

• BOOL: 0|1, y|n, Y|N, yes|no, true|false, on|off

• FLOAT: scalars convertible to C double, or compatible expression

• INT: scalars convertible to C long, or compatible expression

• STRING: quoted character string

8.1 System Configuration File (unifyfs.conf)

unifyfs.conf specifies the system-wide configuration options. The file is written in INI language format, as sup-
ported by the inih parser.

The config file has several sections, each with a few key-value settings. In this description, we use section.key as
shorthand for the name of a given section and key.

Table 1: [unifyfs] section - main configuration settings

Key Type Description
cleanup BOOL cleanup storage on server exit (default: off)
configfile STRING path to custom configuration file
daemonize BOOL enable server daemonization (default: off)
mountpoint STRING mountpoint path prefix (default: /unifyfs)

31

https://github.com/MichaelBrim/tedium/tree/master/configurator
http://en.wikipedia.org/wiki/INI_file
https://github.com/benhoyt/inih

UnifyFS Documentation, Release 1.1

Table 2: [client] section - client settings

Key Type Description
cwd STRING effective starting current working directory
excl_private BOOL create node-local private files when given O_EXCL (default: on)
fsync_persist BOOL persist data to storage on fsync() (default: on)
local_extents BOOL service reads from local data (default: off)
max_files INT maximum number of open files per client process (default: 128)
node_local_extents BOOL service reads from node local data for laminated files (default: off)
super_magic BOOL whether to return UNIFYFS (on) or TMPFS (off) statfs magic (default: on)
unlink_usecs INT number of microseconds to sleep after initiating unlink rpc (default: 0)
write_index_size INT maximum size (B) of memory buffer for storing write log metadata
write_sync BOOL sync data to server after every write (default: off)

The client.cwd setting is used to emulate the behavior one expects when changing into a working directory before
starting a job and then using relative file names within the application. If set, the application changes its working
directory to the value specified in client.cwd when unifyfs_mount() is called. The value specified in client.
cwd must be within the directory space of the UnifyFS mount point.

Enabling the client.local_extents optimization may significantly improve read performance for extents written
by the same process. However, it should not be used by applications in which different processes write to the same byte
offset within a file, nor should it be used with applications that truncate files.

Table 3: [log] section - logging settings

Key Type Description
dir STRING path to directory to contain server log file
file STRING log file base name (rank will be appended)
on_error BOOL increase log verbosity upon encountering an error (default: off)
verbosity INT logging verbosity level [0-5] (default: 0)

Table 4: [logio] section - log-based write data storage settings

Key Type Description
chunk_size INT data chunk size (B) (default: 4 MiB)
shmem_size INT maximum size (B) of data in shared memory (default: 256 MiB)
spill_size INT maximum size (B) of data in spillover file (default: 4 GiB)
spill_dir STRING path to spillover data directory

Table 5: [margo] section - margo server NA settings

Key Type Description
tcp BOOL Use TCP for server-to-server rpcs (default: on, turn off to enable libfabric RMA)
client_timeout INT timeout in milliseconds for rpcs between client and server (default: 5000)
server_timeout INT timeout in milliseconds for rpcs between servers (default: 15000)

32 Chapter 8. UnifyFS Configuration

UnifyFS Documentation, Release 1.1

Table 6: [runstate] section - server runstate settings

Key Type Description
dir STRING path to directory to contain server-local state

Table 7: [server] section - server settings

Key Type Description
hostfile STRING path to server hostfile
init_timeout INT timeout in seconds to wait for servers to be ready for clients (default: 120)
local_extents BOOL use server extents to service local reads without consulting file owner

Table 8: [sharedfs] section - server shared files settings

Key Type Description
dir STRING path to directory to contain server shared files

8.2 Environment Variables

All environment variables take the form UNIFYFS_SECTION_KEY, except for the [unifyfs] section, which
uses UNIFYFS_KEY. For example, the setting log.verbosity has a corresponding environment variable named
UNIFYFS_LOG_VERBOSITY, while unifyfs.mountpoint corresponds to UNIFYFS_MOUNTPOINT.

8.3 Command Line Options

For server command line options, we use getopt_long() format. Thus, all command line options have long and
short forms. The long form uses --section-key=value, while the short form -<optchar> value, where the short
option character is given in the below table.

Note that for configuration options of type BOOL, the value is optional. When not provided, the true value is assumed.
If the short form option is used, the value must immediately follow the option character (e.g., -Cyes).

Table 9: unifyfsd command line options

LongOpt ShortOpt
--unifyfs-cleanup -C
--unifyfs-configfile -f
--unifyfs-daemonize -D
--log-verbosity -v
--log-file -l
--log-dir -L
--runstate-dir -R
--server-hostfile -H
--sharedfs-dir -S
--server-init_timeout -t

8.2. Environment Variables 33

UnifyFS Documentation, Release 1.1

34 Chapter 8. UnifyFS Configuration

CHAPTER

NINE

RUN UNIFYFS

This section describes the mechanisms to start and stop the UnifyFS server processes within a job allocation.

Overall, the steps to run an application with UnifyFS include:

1. Allocate nodes using the system resource manager (i.e., start a job)

2. Update any desired UnifyFS server configuration settings

3. Start UnifyFS servers on each allocated node using unifyfs

4. Run one or more UnifyFS-enabled applications

5. Terminate the UnifyFS servers using unifyfs

9.1 Start UnifyFS

First, one must start the UnifyFS server process (unifyfsd) on the nodes in the job allocation. UnifyFS provides the
unifyfs command line utility to simplify this action on systems with supported resource managers. The easiest way
to determine if you are using a supported system is to run unifyfs start within an interactive job allocation. If no
compatible resource management system is detected, the utility reports an error message to that effect.

In start mode, the unifyfs utility automatically detects the allocated nodes and launches a server on each node.
For example, the following script could be used to launch the unifyfsd servers with a customized configuration.
On systems with resource managers that propagate environment settings to compute nodes, the environment variables
override any settings in /etc/unifyfs/unifyfs.conf. See UnifyFS Configuration for further details on customizing
the UnifyFS runtime configuration.

1 #!/bin/bash
2

3 # spillover data to node-local ssd storage
4 export UNIFYFS_LOGIO_SPILL_DIR=/mnt/ssd/$USER/data
5

6 # store server logs in job-specific scratch area
7 export UNIFYFS_LOG_DIR=$JOBSCRATCH/logs
8

9 unifyfs start --share-dir=/path/to/shared/file/system

unifyfs provides command-line options to select the shared file system path, choose the client mountpoint, and control
stage-in and stage-out of files. The full usage for unifyfs is as follows:

35

UnifyFS Documentation, Release 1.1

[prompt]$ unifyfs --help

Usage: unifyfs <command> [options...]

<command> should be one of the following:
start start the UnifyFS server daemons
terminate terminate the UnifyFS server daemons

Common options:
-d, --debug enable debug output
-h, --help print usage

Command options for "start":
-e, --exe=<path> [OPTIONAL] <path> where unifyfsd is installed
-m, --mount=<path> [OPTIONAL] mount UnifyFS at <path>
-s, --script=<path> [OPTIONAL] <path> to custom launch script
-t, --timeout=<sec> [OPTIONAL] wait <sec> until all servers become ready
-S, --share-dir=<path> [REQUIRED] shared file system <path> for use by servers
-c, --cleanup [OPTIONAL] clean up the UnifyFS storage upon server exit
-i, --stage-in=<manifest> [OPTIONAL] stage in file(s) listed in <manifest> file
-P, --stage-parallel [OPTIONAL] use parallel stage-in
-T, --stage-timeout=<sec> [OPTIONAL] timeout for stage-in operation

Command options for "terminate":
-o, --stage-out=<manifest> [OPTIONAL] stage out file(s) listed in <manifest> on␣

→˓termination
-P, --stage-parallel [OPTIONAL] use parallel stage-out
-T, --stage-timeout=<sec> [OPTIONAL] timeout for stage-out operation
-s, --script=<path> [OPTIONAL] <path> to custom termination script
-S, --share-dir=<path> [REQUIRED for --stage-out] shared file system <path> for␣

→˓use by servers

After UnifyFS servers have been successfully started, you may run your UnifyFS-enabled applications as you normally
would (e.g., using mpirun). Only applications that explicitly call unifyfs_mount() and access files under the specified
mountpoint prefix will utilize UnifyFS for their I/O. All other applications will operate unchanged.

9.2 Stop UnifyFS

After all UnifyFS-enabled applications have completed running, use unifyfs terminate to terminate the servers.
Pass the --cleanup option to unifyfs start to have the servers remove temporary data locally stored on each node
after termination.

36 Chapter 9. Run UnifyFS

UnifyFS Documentation, Release 1.1

9.3 Resource Manager Job Integration

UnifyFS includes optional support for integrating directly with compatible resource managers to automatically start
and stop servers at the beginning and end of a job when requested by users. Resource manager integration requires
administrator privileges to deploy.

Currently, only IBM’s Platform LSF with Cluster System Manager (LSF-CSM) is supported. LSF-CSM is the resource
manager on the CORAL2 IBM systems at ORNL and LLNL. The required job prologue and epilogue scripts, along
with a README documenting the installation instructions, is available within the source repository at util/scripts/
lsfcsm.

Support for the SLURM resource manager is under development.

9.4 Transferring Data In and Out of UnifyFS

Data can be transferred in/out of UnifyFS during server startup and termination, or at any point during a job using two
stand-alone applications.

9.4.1 Transfer at Server Start/Terminate

The transfer subsystem within UnifyFS can be invoked by providing the -i|--stage-in option to unifyfs start
to transfer files into UnifyFS:

$ unifyfs start --stage-in=/path/to/input/manifest/file --share-dir=/path/to/shared/file/
→˓system

and/or by providing the -o|--stage-out option to unifyfs terminate to transfer files out of UnifyFS:

$ unifyfs terminate --stage-out=/path/to/output/manifest/file --share-dir=/path/to/
→˓shared/file/system

The argument to both staging options is the path to a manifest file that contains the source and destination file pairs.
Both stage-in and stage-out also require passing the -S|--share-dir=<path> option.

Manifest File

UnifyFS’s file staging functionality requires a manifest file in order to move data.

The manifest file contains one or more file copy requests. Each line in the manifest corresponds to one transfer request,
and it contains both the source and destination file paths. Directory copies are currently not supported.

Each line is formatted as: <source filename> <whitespace> <destination filename>.

If either of the filenames contain whitespace or special characters, then both filenames should be surrounded by double-
quote characters (”) (ASCII character 34 decimal). The double-quote and linefeed end-of-line characters are not sup-
ported in any filenames used in a manifest file. Any other characters are allowed, including control characters. If a
filename contains any characters that might be misinterpreted, we suggest enclosing the filename in double-quotes.
Comment lines are also allowed, and are indicated by beginning a line with the # character.

Here is an example of a valid stage-in manifest file:

9.3. Resource Manager Job Integration 37

UnifyFS Documentation, Release 1.1

$ [prompt] cat example_stage_in.manifest

/scratch/users/me/input_data/input_1.dat /unifyfs/input/input_1.dat
example comment line
/home/users/me/configuration/run_12345.conf /unifyfs/config/run_12345.conf
"/home/users/me/file with space.dat" "/unifyfs/file with space.dat"

9.4.2 Transfer During Job

Data can also be transferred in/out of UnifyFS using the unifyfs-stage helper program. This is the same program
used internally by unifyfs to provide file staging during server startup and termination.

The helper program can be invoked at any time while the UnifyFS servers are up and responding to requests. This
allows for bringing in new input and/or transferring results out to be verified before the job terminates.

UnifyFS Stage Executable

The unifyfs-stage program is installed in the same directory as the unifyfs utility (i.e., $UNIFYFS_INSTALL/bin).

A manifest file (see above) needs to be provided as an argument to use this approach.

[prompt]$ unifyfs-stage --help

Usage: unifyfs-stage [OPTION]... <manifest file>

Transfer files between unifyfs volume and external file system.
The <manifest file> should contain list of files to be transferred,
and each line should be formatted as

/source/file/path /destination/file/path

OR in the case of filenames with spaces or special characters:

"/source/file/path" "/destination/file/path"

One file per line; Specifying directories is not currently supported.

Available options:
-c, --checksum Verify md5 checksum for each transfer

(default: off)
-h, --help Print usage information
-m, --mountpoint=<mnt> Use <mnt> as UnifyFS mountpoint

(default: /unifyfs)
-p, --parallel Transfer all files concurrently

(default: off, use sequential transfers)
-s, --skewed Use skewed data distribution for stage-in

(default: off, use balanced distribution)
-S, --status-file=<path> Create stage status file at <path>
-v, --verbose Print verbose information

(default: off)

By default, each file in the manifest will be transferred in sequence (i.e.,
(continues on next page)

38 Chapter 9. Run UnifyFS

UnifyFS Documentation, Release 1.1

(continued from previous page)

only a single file will be in transfer at any given time). If the
'-p, --parallel' option is specified, files in the manifest will be
transferred concurrently. The number of concurrent transfers is limited by
the number of parallel ranks used to execute unifyfs-stage.

Examples:

Listing 1: Sequential Transfer using a Single Client

$ srun -N 1 -n 1 unifyfs-stage $MY_MANIFEST_FILE

Listing 2: Parallel Transfer using 8 Clients (up to 8 concurrent file trans-
fers)

$ srun -N 4 -n 8 unifyfs-stage --parallel $MY_MANIFEST_FILE

9.5 UnifyFS LS Executable

The unifyfs-ls program is installed in the same directory as the unifyfs utility (i.e., $UNIFYFS_INSTALL/bin).
This tool will provide information about any files the local server process knows about. Users may find this helpful
when debugging their applications and want to know if the files they think are being managed by UnifyFS really are.

[prompt]$ unifyfs-ls --help
Usage:
unifyfs-ls [-v | --verbose] [-m <dir_name> | --mount_point_dir=<dir_name>]

-v | --verbose: show verbose information(default: 0)
-m | --mount_point: the location where unifyfs is mounted (default: /unifyfs)

9.5. UnifyFS LS Executable 39

UnifyFS Documentation, Release 1.1

40 Chapter 9. Run UnifyFS

CHAPTER

TEN

EXAMPLE PROGRAMS

There are several examples available on ways to use UnifyFS. These examples build into static, GOTCHA, and pure
POSIX (not linked with UnifyFS) versions depending on how they are linked. Several of the example programs are
also used in the UnifyFS intregraton testing.

10.1 Locations of Examples

The example programs can be found in two locations, where UnifyFS is built and where UnifyFS is installed.

10.1.1 Install Location

Upon installation of UnifyFS, the example programs are installed into the <install_prefix_dir>/libexec direc-
tory.

Installed with Spack

The Spack installation location of UnifyFS can be found with the command spack location -i unifyfs.

To easily navigate to this location and find the examples, do:

$ spack cd -i unifyfs
$ cd libexec

Installed with Autotools

The autotools installation of UnifyFS will place the example programs in the libexec subdirectory of the path provided
to --prefix=/path/to/install during the configure step of building and installing.

41

https://github.com/LLNL/UnifyFS/tree/dev/examples/src

UnifyFS Documentation, Release 1.1

10.1.2 Build Location

Built with Spack

The Spack build location of UnifyFS (on a successful install) only exists when --keep-stage in included during
installation or if the build fails. This location can be found with the command spack location unifyfs.

To navigate to the location of the static and POSIX examples, do:

$ spack install --keep-stage unifyfs
$ spack cd unifyfs
$ cd spack-build/examples/src

The GOTCHA examples are one directory deeper in spack-build/examples/src/.libs.

Note: If you installed UnifyFS with any variants, in order to navigate to the build directory you must include these
variants in the spack cd command. E.g.:

spack cd unifyfs+hdf5 ^hdf5~mpi

Built with Autotools

The autotools build of UnifyFS will place the static and POSIX example programs in the examples/src directory and
the GOTCHA example programs in the examples/src/.libs directory of your build directory.

Manual Build from Installed UnifyFS

On some systems, particularly those using compiler wrappers (e.g., HPE/Cray systems), the autotools build of the
example programs will fail due to a longstanding issue with the way that libtool reorders compiler and linker flags.
A Makefile suitable for manually building the examples from a previously installed version of UnifyFS is available
at examples/src/Makefile.examples. This Makefile also serves as a good reference for how to use the UnifyFS
pkg-config support to build and link client programs. The following commands will build the example programs
using this Makefile.

$ cd <source_dir>/examples/src
$ make -f Makefile.examples

10.2 Running the Examples

In order to run any of the example programs you first need to start the UnifyFS server daemon on the nodes in the job
allocation. To do this, see Run UnifyFS.

Each example takes multiple arguments and so each has its own --help option to aid in this process.

[prompt]$./write-static --help

Usage: write-static [options...]

Available options:
(continues on next page)

42 Chapter 10. Example Programs

UnifyFS Documentation, Release 1.1

(continued from previous page)

-a, --library-api use UnifyFS library API instead of POSIX I/O
(default: off)

-A, --aio use asynchronous I/O instead of read|write
(default: off)

-b, --blocksize=<bytes> I/O block size
(default: 16 MiB)

-c, --chunksize=<bytes> I/O chunk size for each operation
(default: 1 MiB)

-d, --debug for debugging, wait for input (at rank 0) at start
(default: off)

-D, --destfile=<filename> transfer destination file name (or path) outside mountpoint
(default: none)

-f, --file=<filename> target file name (or path) under mountpoint
(default: 'testfile')

-k, --check check data contents upon read
(default: off)

-l, --laminate laminate file after writing all data
(default: off)

-L, --listio use lio_listio instead of read|write
(default: off)

-m, --mount=<mountpoint> use <mountpoint> for unifyfs
(default: /unifyfs)

-M, --mpiio use MPI-IO instead of POSIX I/O
(default: off)

-n, --nblocks=<count> count of blocks each process will read|write
(default: 32)

-N, --mapio use mmap instead of read|write
(default: off)

-o, --outfile=<filename> output file name (or path)
(default: 'stdout')

-p, --pattern=<pattern> 'n1' (N-to-1 shared file) or 'nn' (N-to-N file per process)
(default: 'n1')

-P, --prdwr use pread|pwrite instead of read|write
(default: off)

-r, --reuse-filename remove and reuse the same target file name
(default: off)

-S, --stdio use fread|fwrite instead of read|write
(default: off)

-t, --pre-truncate=<size> truncate file to size (B) before writing
(default: off)

-T, --post-truncate=<size> truncate file to size (B) after writing
(default: off)

-u, --unlink unlink target file
(default: off)

-U, --disable-unifyfs do not use UnifyFS
(default: enable UnifyFS)

-v, --verbose print verbose information
(default: off)

-V, --vecio use readv|writev instead of read|write
(default: off)

-x, --shuffle read different data than written
(default: off)

10.2. Running the Examples 43

UnifyFS Documentation, Release 1.1

One form of running this example could be:

$ srun -N4 -n4 write-static -m /unifyfs -f myTestFile

10.3 Producer-Consumer Workflow

UnifyFS can be used to support producer/consumer workflows where processes in a job perform loosely synchronized
communication through files such as in coupled simulation/analytics workflows.

The write.c and read.c example programs can be used as a basic test in running a producer-consumer workflow with
UnifyFS.

Listing 1: All hosts in allocation

$ # start unifyfs
$
$ # write on all hosts
$ srun -N4 -n16 write-gotcha -f testfile
$
$ # read on all hosts
$ srun -N4 -n16 read-gotcha -f testfile
$
$ # stop unifyfs

Listing 2: Disjoint hosts in allocation

$ # start unifyfs
$
$ # write on half of hosts
$ srun -N2 -n8 --exclude=$hostlist_subset1 write-gotcha -f testfile
$
$ # read on other half of hosts
$ srun -N2 -n8 --exclude=$hostlist_subset2 read-gotcha -f testfile
$
$ # stop unifyfs

Note: Producer/consumer support with UnifyFS has been tested using POSIX and MPI-IO APIs on x86_64 (MVA-
PICH) and Power 9 systems (Spectrum MPI).

These scenarios have been tested using both the same and disjoint sets of hosts as well as using a shared file and a file
per process for I/O.

44 Chapter 10. Example Programs

CHAPTER

ELEVEN

UNIFYFS API FOR I/O MIDDLEWARE

This section describes the purpose, concepts, and usage of the UnifyFS library API.

11.1 Library API Purpose

The UnifyFS library API provides a direct interface for UnifyFS configuration, namespace management, and batched
file I/O and transfer operations. The library is primarily targeted for use by I/O middleware software such as HDF5 and
VeloC, but is also useful for user applications needing programmatic control and interactions with UnifyFS.

Note: Use of the library API is not required for most applications, as UnifyFS will transparently intercept I/O opera-
tions made by the application. See Example Programs for examples of typical application usage.

11.2 Library API Concepts

11.2.1 Namespace (aka Mountpoint)

All UnifyFS clients provide the mountpoint prefix (e.g., “/unifyfs”) that is used to distinguish the UnifyFS namespace
from other file systems available to the client application. All absolute file paths that include the mountpoint prefix are
treated as belonging to the associated UnifyFS namespace.

Using the library API, an application or I/O middleware system can operate on multiple UnifyFS namespaces concur-
rently.

11.2.2 File System Handle

All library API methods require a file system handle parameter of type unifyfs_handle. Users obtain a valid handle
via an API call to unifyfs_initialize(), which specifies the mountpoint prefix and configuration settings associ-
ated with the handle.

Multiple handles can be acquired by the same client. This permits access to multiple namespaces, or different configured
behaviors for the same namespace.

45

UnifyFS Documentation, Release 1.1

11.2.3 Global File Identifier

A global file identifier (gfid) is a unique integer identifier for a given absolute file path within a UnifyFS namespace.
Clients accessing the exact same file path are guaranteed to obtain the same gfid value when creating or opening the
file. I/O operations use the gfid to identify the target file.

Note that unlike POSIX file descriptors, a gfid is strictly a unique identifier and has no associated file state such as a
current file position pointer. As such, it is valid to obtain the gfid for a file in a single process (e.g., via file creation),
and then share the resulting gfid value among other parallel processes via a collective communication mechanism.

11.3 Library API Types

The file system handle type is a pointer to an opaque client structure that records the associated mountpoint and con-
figuration.

Listing 1: File system handle type

/* UnifyFS file system handle (opaque pointer) */
typedef struct unifyfs_client* unifyfs_handle;

I/O requests take the form of a unifyfs_io_request structure that includes the target file gfid, the specific I/O
operation (unifyfs_ioreq_op) to be applied, and associated operation parameters such as the file offset or user
buffer and size. The structure also contains fields used for tracking the status of the request (unifyfs_req_state)
and operation results (unifyfs_ioreq_result).

Listing 2: File I/O request types

/* I/O request structure */
typedef struct unifyfs_io_request {

/* user-specified fields */
void* user_buf;
size_t nbytes;
off_t offset;
unifyfs_gfid gfid;
unifyfs_ioreq_op op;

/* status/result fields */
unifyfs_req_state state;
unifyfs_ioreq_result result;

} unifyfs_io_request;

/* Enumeration of supported I/O request operations */
typedef enum unifyfs_ioreq_op {

UNIFYFS_IOREQ_NOP = 0,
UNIFYFS_IOREQ_OP_READ,
UNIFYFS_IOREQ_OP_WRITE,
UNIFYFS_IOREQ_OP_SYNC_DATA,
UNIFYFS_IOREQ_OP_SYNC_META,
UNIFYFS_IOREQ_OP_TRUNC,
UNIFYFS_IOREQ_OP_ZERO,

} unifyfs_ioreq_op;

/* Enumeration of API request states */
(continues on next page)

46 Chapter 11. UnifyFS API for I/O Middleware

UnifyFS Documentation, Release 1.1

(continued from previous page)

typedef enum unifyfs_req_state {
UNIFYFS_REQ_STATE_INVALID = 0,
UNIFYFS_REQ_STATE_IN_PROGRESS,
UNIFYFS_REQ_STATE_CANCELED,
UNIFYFS_REQ_STATE_COMPLETED

} unifyfs_req_state;

/* Structure containing I/O request result values */
typedef struct unifyfs_ioreq_result {

int error;
int rc;
size_t count;

} unifyfs_ioreq_result;

For the unifyfs_ioreq_result structure, successful operations will set the rc and count fields as applicable to the
specific operation type. All operational failures are reported by setting the error field to a non-zero value correspond-
ing the the operation failure code, which is often a POSIX errno value.

File transfer requests use a unifyfs_transfer_request structure that includes the source and destination file paths,
transfer mode, and a flag indicating whether parallel file transfer should be used. Similar to I/O requests, the structure
also contains fields used for tracking the request status and transfer operation result.

Listing 3: File transfer request types

/* File transfer request structure */
typedef struct unifyfs_transfer_request {

/* user-specified fields */
const char* src_path;
const char* dst_path;
unifyfs_transfer_mode mode;
int use_parallel;

/* status/result fields */
unifyfs_req_state state;
unifyfs_transfer_result result;

} unifyfs_transfer_request;

/* Enumeration of supported I/O request operations */
typedef enum unifyfs_transfer_mode {

UNIFYFS_TRANSFER_MODE_INVALID = 0,
UNIFYFS_TRANSFER_MODE_COPY, // simple copy to destination
UNIFYFS_TRANSFER_MODE_MOVE // copy, then remove source

} unifyfs_transfer_mode;

/* File transfer result structure */
typedef struct unifyfs_transfer_result {

int error;
int rc;
size_t file_size_bytes;
double transfer_time_seconds;

} unifyfs_transfer_result;

11.3. Library API Types 47

UnifyFS Documentation, Release 1.1

11.4 Example Library API Usage

To get started using the library API, please add the following to your client source code files that will make calls to API
methods. You will also need to modify your client application build process to link with the libunifyfs_api library.

Listing 4: Including the API header

#include <unifyfs/unifyfs_api.h>

The common pattern for using the library API is to initialize a UnifyFS file system handle, perform a number of
operations using that handle, and then release the handle. As previously mentioned, the same client process may
initialize multiple file system handles and use them concurrently, either to work with multiple namespaces, or to use
different configured behaviors with different handles sharing the same namespace.

11.4.1 File System Handle Initialization and Finalization

To initialize a handle to UnifyFS, the client application uses the unifyfs_initialize() method as shown below.
This method takes the namespace mountpoint prefix and an array of optional configuration parameter settings as input
parameters, and initializes the value of the passed file system handle upon success.

In the example below, the logio.chunk_size configuration parameter, which controls the size of the log-based I/O
data chunks, is set to the value of 32768. See UnifyFS Configuration for further options for customizing the behavior
of UnifyFS.

Listing 5: UnifyFS handle initialization

int n_configs = 1;
unifyfs_cfg_option chk_size = { .opt_name = "logio.chunk_size",

.opt_value = "32768" };

const char* unifyfs_prefix = "/my/unifyfs/namespace";
unifyfs_handle fshdl = UNIFYFS_INVALID_HANDLE;
int rc = unifyfs_initialize(unifyfs_prefix, &chk_size, n_configs, &fshdl);

Once all UnifyFS operation using the handle have been completed, the client application should call
unifyfs_finalize() as shown below to release the resources associated with the handle.

Listing 6: UnifyFS handle finalization

int rc = unifyfs_finalize(fshdl);

11.4.2 File Creation, Use, and Removal

New files should be created by a single client process using unifyfs_create() as shown below. Note that if multiple
clients attempt to create the same file, only one will succeed.

Note: Currently, the create_flags parameter is unused; it is reserved for future use to indicate file-specific UnifyFS
behavior.

48 Chapter 11. UnifyFS API for I/O Middleware

UnifyFS Documentation, Release 1.1

Listing 7: UnifyFS file creation

const char* filename = "/my/unifyfs/namespace/a/new/file";
int create_flags = 0;
unifyfs_gfid gfid = UNIFYFS_INVALID_GFID;
int rc = unifyfs_create(fshdl, create_flags, filename, &gfid);

Existing files can be opened by any client process using unifyfs_open().

Listing 8: UnifyFS file use

const char* filename = "/my/unifyfs/namespace/an/existing/file";
unifyfs_gfid gfid = UNIFYFS_INVALID_GFID;
int access_flags = O_RDWR;
int rc = unifyfs_open(fshdl, access_flags, filename, &gfid);

When no longer required, files can be deleted using unifyfs_remove().

Listing 9: UnifyFS file removal

const char* filename = "/my/unifyfs/namespace/an/existing/file";
int rc = unifyfs_remove(fshdl, filename);

11.4.3 Batched File I/O

File I/O operations in the library API use a batched request interface similar to POSIX lio_listio(). A client
application dispatches an array of I/O operation requests, where each request identifies the target file gfid, the operation
type (e.g., read, write, or truncate), and associated operation parameters. Upon successful dispatch, the operations will
be executed by UnifyFS in an asynchronous manner that allows the client to overlap other computation with I/O. The
client application must then explicitly wait for completion of the requests in the batch. After an individual request has
been completed (or canceled by the client), the request’s operation results can be queried.

When dispatching a set of requests that target the same file, there is an order imposed on the types of operations. First,
all read operations are processed, followed by writes, then truncations, and finally synchronization operations. Note
that this means a read request will not observe any data written in the same batch.

A simple use case for batched I/O is shown below, where the client dispatches a batch of requests including several rank-
strided write operations followed by a metadata sync to make those writes visible to other clients, and then immediately
waits for completion of the entire batch.

Listing 10: Synchronous Batched I/O

/* write and sync file metadata */
size_t n_chks = 10;
size_t chunk_size = 1048576;
size_t block_size = chunk_size * total_ranks;
size_t n_reqs = n_chks + 1;
unifyfs_io_request my_reqs[n_reqs];
for (size_t i = 0; i < n_chks; i++) {

my_reqs[i].op = UNIFYFS_IOREQ_OP_WRITE;
my_reqs[i].gfid = gfid;
my_reqs[i].nbytes = chunk_size;
my_reqs[i].offset = (off_t)((i * block_size) + (my_rank * chunk_size));

(continues on next page)

11.4. Example Library API Usage 49

UnifyFS Documentation, Release 1.1

(continued from previous page)

my_reqs[i].user_buf = my_databuf + (i * chksize);
}
my_reqs[n_chks].op = UNIFYFS_IOREQ_OP_SYNC_META;
my_reqs[n_chks].gfid = gfid;

rc = unifyfs_dispatch_io(fshdl, n_reqs, my_reqs);
if (rc == UNIFYFS_SUCCESS) {

int waitall = 1;
rc = unifyfs_wait_io(fshdl, n_reqs, my_reqs, waitall);
if (rc == UNIFYFS_SUCCESS) {

for (size_t i = 0; i < n_reqs; i++) {
assert(my_reqs[i].result.error == 0);

}
}

}

11.4.4 Batched File Transfers

File transfer operations in the library API also use a batched request interface. A client application dispatches an array
of file transfer requests, where each request identifies the source and destination file paths and the transfer mode. Two
transfer modes are currently supported:

1. COPY - Copy source file to destination path.

2. MOVE - Copy source file to destination path, then remove source file.

Upon successful dispatch, the transfer operations will be executed by UnifyFS in an asynchronous manner that allows
the client to overlap other computation with I/O. The client application must then explicitly wait for completion of the
requests in the batch. After an individual request has been completed (or canceled by the client), the request’s operation
results can be queried.

A simple use case for batched transfer is shown below, where the client dispatches a batch of requests and then imme-
diately waits for completion of the entire batch.

Listing 11: Synchronous Batched File Transfers

/* move output files from UnifyFS to parallel file system */
const char* destfs_prefix = "/some/parallel/filesystem/location";
size_t n_files = 3;
unifyfs_transfer_request my_reqs[n_files];
char src_file[PATHLEN_MAX];
char dst_file[PATHLEN_MAX];
for (int i = 0; i < (int)n_files; i++) {

snprintf(src_file, sizeof(src_file), "%s/file.%d", unifyfs_prefix, i);
snprintf(dst_file, sizeof(src_file), "%s/file.%d", destfs_prefix, i);
my_reqs[i].src_path = strdup(src_file);
my_reqs[i].dst_path = strdup(dst_file);
my_reqs[i].mode = UNIFYFS_TRANSFER_MODE_MOVE;
my_reqs[i].use_parallel = 1;

}

rc = unifyfs_dispatch_transfer(fshdl, n_files, my_reqs);
if (rc == UNIFYFS_SUCCESS) {

(continues on next page)

50 Chapter 11. UnifyFS API for I/O Middleware

UnifyFS Documentation, Release 1.1

(continued from previous page)

int waitall = 1;
rc = unifyfs_wait_transfer(fshdl, n_files, my_reqs, waitall);
if (rc == UNIFYFS_SUCCESS) {

for (int i = 0; i < (int)n_files; i++) {
assert(my_reqs[i].result.error == 0);

}
}

}

11.4.5 More Examples

Additional examples demonstrating use of the library API can be found in the unit tests (see api-unit-tests).

11.4. Example Library API Usage 51

https://github.com/LLNL/UnifyFS/blob/dev/t/api

UnifyFS Documentation, Release 1.1

52 Chapter 11. UnifyFS API for I/O Middleware

CHAPTER

TWELVE

UNIFYFS DEPENDENCIES

12.1 Required

• Automake version 1.15 (or later)

• GOTCHA version 1.0.4 (or later)

• Margo version 0.13.1 and its dependencies:

– Argobots version 1.1 (or later)

– Mercury version 2.2.0 (or later)

∗ libfabric (avoid versions 1.13 and 1.13.1) or bmi

– JSON-C

• OpenSSL

Important: Margo uses pkg-config to ensure it compiles and links correctly with all of its dependencies’ libraries.
When building manually, you’ll need to set the PKG_CONFIG_PATH environment variable to include the paths of the
directories containing the .pc files for Margo, Mercury, Argobots, and OpenSSL.

12.2 Optional

• spath for normalizing relative paths

53

https://ftp.gnu.org/gnu/automake/
https://github.com/LLNL/GOTCHA/releases
https://github.com/mochi-hpc/mochi-margo/releases
https://github.com/pmodels/argobots/releases
https://github.com/mercury-hpc/mercury/releases
https://github.com/ofiwg/libfabric
https://github.com/radix-io/bmi/
https://github.com/json-c/json-c
https://www.openssl.org/source/
https://github.com/ecp-veloc/spath

UnifyFS Documentation, Release 1.1

54 Chapter 12. UnifyFS Dependencies

CHAPTER

THIRTEEN

UNIFYFS ERROR CODES

Wherever sensible, UnifyFS uses the error codes defined in POSIX errno.h.

UnifyFS specific error codes are defined as follows:

Value Error Description
1001 BADCONFIG Configuration has invalid setting
1002 GOTCHA Gotcha operation error
1003 KEYVAL Key-value store operation error
1004 MARGO Mercury/Argobots operation error
1005 NYI Not yet implemented
1006 PMI PMI2/PMIx error
1007 SHMEM Shared memory region init/access error
1008 THREAD POSIX thread operation failed
1009 TIMEOUT Operation timed out

55

https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/errno.h.html

UnifyFS Documentation, Release 1.1

56 Chapter 13. UnifyFS Error Codes

CHAPTER

FOURTEEN

VERIFYIO: DETERMINE UNIFYFS COMPATIBILITY

14.1 Recorder and VerifyIO

VerifyIO can be used to determine an application’s compatibility with UnifyFS as well as aid in narrowing down what
an application may need to change to become compatible with UnifyFS.

VerifyIO is a tool within the Recorder tracing framework that takes the application traces from Recorder and deter-
mines whether I/O synchronization is correct based on the underlying file system semantics (e.g., POSIX, commit) and
synchronization semantics (e.g., POSIX, MPI).

Run VerifyIO with commit semantics on the application’s traces to determine compatibility with UnifyFS.

14.2 VerifyIO Guide

To use VerifyIO, the Recorder library needs to be installed. See the Recorder README for full instructions on how
to build, run, and use Recorder.

14.2.1 Build

Clone the pilgrim (default) branch of Recorder:

Listing 1: Clone

$ git clone https://github.com/uiuc-hpc/Recorder.git

Determine the install locations of the MPI-IO and HDF5 libraries being used by the application and pass those paths
to Recorder at configure time.

Listing 2: Configure, Make, and Install

$ deps_prefix="${mpi_install};${hdf5_install}"
$ mkdir -p build install

$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=../install -DCMAKE_PREFIX_PATH=$deps_prefix ../Recorder
$ make
$ make install

(continues on next page)

57

https://github.com/uiuc-hpc/Recorder/tree/pilgrim/tools/verifyio#note-on-the-third-step
https://github.com/uiuc-hpc/Recorder
https://github.com/uiuc-hpc/Recorder/blob/pilgrim/README.md

UnifyFS Documentation, Release 1.1

(continued from previous page)

Capture Recorder source code and install locations
$ export RECORDER_SRC=/path/to/Recorder/source/code
$ export RECORDER_ROOT=/path/to/Recorder/install

Python3 and the recorder-viz and networkx packages are also required to run the final VerifyIO verification code.

Listing 3: Install Python Packages

$ module load python/3.x.x
$
$ pip3 install recorder-viz --user
$ pip3 install networkx --user

14.2.2 Run

Before capturing application traces, it is recommended to disable data sieving as VerifyIO will flag this as incompatible
under commit semantics.

Listing 4: Disable Data Sieving

echo -e "romio_ds_write disable\nromio_ds_read disable" > /path/to/romio_hints
export ROMIO_HINTS=/path/to/romio_hints
export ROMIO_PRINT_HINTS=1 #optional

Run the application with Recorder to capture the traces using the appropriate environment variable export option for
the available workload manager.

Listing 5: Capture Traces

srun -N $nnodes -n $nprocs --export=ALL,LD_PRELOAD=$RECORDER_ROOT/lib/librecorder.so␣
→˓example_app_executable

Recorder places the trace files in a folder within the current working directory named
hostname-username-appname-pid-starttime.

If desired (e.g., for debugging), use the recorder2text tool to generate human-readable traces from the captured trace
files.

Listing 6: Generate Human-readable Traces

$RECORDER_ROOT/bin/recorder2text /path/to/traces &> recorder2text.out

This will generate text-format traces in the folder path/to/traces/_text.

Next, run the Recorder conflict detector to capture potential conflicts. The --semantics= option needs to match the
semantics of the intended underlying file system. In the case of UnifyFS, use commit semantics.

Listing 7: Capture Potential Conflicts

$RECORDER_ROOT/bin/conflict_detector /path/to/traces --semantics=commit &> conflict_
→˓detector_commit.out

The potential conflicts will be recorded to the file path/to/traces/conflicts.txt.

58 Chapter 14. VerifyIO: Determine UnifyFS Compatibility

UnifyFS Documentation, Release 1.1

Lastly, run VerifyIO with the traces and potential conflicts to determine whether all I/O operations are properly syn-
chronized under the desired standard (e.g., POSIX, MPI).

Listing 8: Run VerifyIO

Evaluate using POSIX standard
python3 $RECORDER_SRC/tools/verifyio/verifyio.py /path/to/traces /path/to/traces/
→˓conflicts.txt --semantics=posix &> verifyio_commit_results.posix

Evaluate using MPI standard
python3 $RECORDER_SRC/tools/verifyio/verifyio.py /path/to/traces /path/to/traces/
→˓conflicts.txt --semantics=mpi &> verifyio_commit_results.mpi

14.2.3 Interpreting Results

In the event VerifyIO shows an incompatibility, or the results are not clear, don’t hesitate to contact the UnifyFS team
mailing list for aid in determining a solution.

Conflict Detector Results

When there are no potential conflicts, the conflict detector output simply states as much:

[prompt]$ cat conflict_detector_commit.out
Check potential conflicts under Commit Semantics
...
No potential conflict found for file /path/to/example_app_outfile

When potential conflicts exist, the conflict detector prints a list of each conflicting pair. For each operation within a
pair, the output contains the process rank, sequence ID, offset the conflict occurred at, number of bytes affected by the
operation, and whether the operation was a write or a read. This format is printed at the top of the output.

[prompt]$ cat conflict_detector_commit.out
Check potential conflicts under Commit Semantics
Format:
Filename, io op1(rank-seqId, offset, bytes, isRead), io op2(rank-seqId, offset, bytes,␣
→˓isRead)

/path/to/example_app_outfile, op1(0-244, 0, 800, write), op2(0-255, 0, 96, write)
/path/to/example_app_outfile, op1(0-92, 4288, 2240, write), op2(0-148, 4288, 2216, read)
/path/to/example_app_outfile, op1(1-80, 6528, 2240, write), op2(1-136, 6528, 2216, read)
...
/path/to/example_app_outfile, op1(0-169, 18480, 4888, write), op2(3-245, 18848, 14792,␣
→˓read)
/path/to/example_app_outfile, op1(0-169, 18480, 4888, write), op2(3-246, 18848, 14792,␣
→˓write)
/path/to/example_app_outfile, op1(0-231, 18480, 16816, write), op2(3-245, 18848, 14792,␣
→˓read)
/path/to/example_app_outfile, Read-after-write (RAW): D-2,S-5, Write-after-write (WAW):␣
→˓D-1,S-2

The final line printed contains a summary of all the potential conflicts. This consists of the total number of read-after-
write (RAW) and write-after-write (WAW) potentially conflicting operations performed by different processes (D-#) or
the same process (S-#).

14.2. VerifyIO Guide 59

mailto:ecp-unifyfs@exascaleproject.org

UnifyFS Documentation, Release 1.1

VerifyIO Results

VerifyIO takes the traces and potential conflicts and checks if each conflicting pair is properly synchronized. Refer to
the VerifyIO README for a description on what determines proper synchronization for a conflicting I/O pair.

Compatible with UnifyFS

In the event that there are no potential conflicts, or each potential conflict pair was performed by the same rank, VerifyIO
will report the application as being properly synchronized and therefore compatible with UnifyFS.

[prompt]$ cat verifyio_commit_results.posix
Rank: 0, intercepted calls: 79, accessed files: 5
Rank: 1, intercepted calls: 56, accessed files: 2
Building happens-before graph
Nodes: 46, Edges: 84

Properly synchronized under posix semantics

[prompt]$ cat verifyio_commit_results.mpi
Rank: 0, intercepted calls: 79, accessed files: 5
Rank: 1, intercepted calls: 56, accessed files: 2
Building happens-before graph
Nodes: 46, Edges: 56

Properly synchronized under mpi semantics

When there are potential conflicts from different ranks but the proper synchronization has occurred, VerifyIO will also
report the application as being properly synchronized.

[prompt]$ cat verifyio_commit_results.posix
Rank: 0, intercepted calls: 510, accessed files: 8
Rank: 1, intercepted calls: 482, accessed files: 5
Rank: 2, intercepted calls: 481, accessed files: 5
Rank: 3, intercepted calls: 506, accessed files: 5
Building happens-before graph
Nodes: 299, Edges: 685
Conflicting I/O operations: 0-169-write <--> 3-245-read, properly synchronized: True
Conflicting I/O operations: 0-169-write <--> 3-246-write, properly synchronized: True

Properly synchronized under posix semantics

Incompatible with UnifyFS

In the event there are potential conflicts from different ranks but the proper synchronization has not occurred, VerifyIO
will report the application as not being properly synchronized and therefore incompatible*0 with UnifyFS.

Each operation involved in the conflicting pair is listed in the format rank-sequenceID-operation followed by the
whether that pair is properly synchronized.

0 Incompatible here does not mean the application cannot work with UnifyFS at all, just under the default configuration. There are workarounds
available that could very easily change this result (VerifyIO plans to have options to run under the assumption some workarounds are in place).
Should your outcome be an incompatible result, please contact the UnifyFS mailing list for aid in finding a solution.

60 Chapter 14. VerifyIO: Determine UnifyFS Compatibility

mailto:ecp-unifyfs@exascaleproject.org

UnifyFS Documentation, Release 1.1

[prompt]$ cat verifyio_commit_results.mpi
Rank: 0, intercepted calls: 510, accessed files: 8
Rank: 1, intercepted calls: 482, accessed files: 5
Rank: 2, intercepted calls: 481, accessed files: 5
Rank: 3, intercepted calls: 506, accessed files: 5
Building happens-before graph
Nodes: 299, Edges: 427
0-169-write --> 3-245-read, properly synchronized: False
0-169-write --> 3-246-write, properly synchronized: False

Not properly synchronized under mpi semantics

Debugging a Conflict

The recorder2text output can be used to aid in narrowing down where/what is causing a conflicting pair. In the incom-
patible example above, the first pair is a write() from rank 0 with the sequence ID of 169 and a read() from rank 3
with the sequence ID of 245.

The sequence IDs correspond to the order in which functions were called by that particular rank. In the recorder2text
output, this ID will then correspond to line numbers, but off by +1 (i.e., seqID 169 -> line# 170).

Listing 9: recorder2text output

#rank 0
...

167 0.1440291 0.1441011 MPI_File_write_at_all 1 1 (0-0 0 %p 1 MPI_TYPE_UNKNOWN [0_0])
168 0.1440560 0.1440679 fcntl 2 0 (/path/to/example_app_outfile 7 1)
169 0.1440700 0.1440750 pread 2 0 (/path/to/example_app_outfile %p 4888 18480)
170 0.1440778 0.1440909 pwrite 2 0 (/path/to/example_app_outfile %p 4888 18480)
171 0.1440918 0.1440987 fcntl 2 0 (/path/to/example_app_outfile 6 2)

...

#rank 3
...

244 0.1539204 0.1627174 MPI_File_write_at_all 1 1 (0-0 0 %p 1 MPI_TYPE_UNKNOWN [0_0])
245 0.1539554 0.1549513 fcntl 2 0 (/path/to/example_app_outfile 7 1)
246 0.1549534 0.1609544 pread 2 0 (/path/to/example_app_outfile %p 14792 18848)
247 0.1609572 0.1627053 pwrite 2 0 (/path/to/example_app_outfile %p 14792 18848)
248 0.1627081 0.1627152 fcntl 2 0 (/path/to/example_app_outfile 6 2)

...

Note that in this example the pread()/pwrite() calls from rank 3 operate on overlapping bytes from the pwrite()
call from rank 0. For this example, data sieving was left enabled which results in “fcntl-pread-pwrite-fcntl” I/O se-
quences. Refer to Limitations and Workarounds for more on the file locking limitations of UnifyFS.

The format of the recorder2text output is: <start-time> <end-time> <func-name> <call-level>
<func-type> (func-parameters)

Note: The <call-level> value indicates whether the function was called directly by the application or by an I/O
library. The <func-type> value shows the Recorder-tracked function type.

14.2. VerifyIO Guide 61

UnifyFS Documentation, Release 1.1

Value Call Level Value Function Type
0 Called by applica-

tion directly
0 RECORDER_POSIX

1 • Called by
HDF5

• Called by MPI
(no HDF5)

1 RECORDER_MPIIO

2 RECORDER_MPI

2 Called by MPI,
which was called by
HDF5

3 RECORDER_HDF5

4 RECORDER_FTRACE

62 Chapter 14. VerifyIO: Determine UnifyFS Compatibility

CHAPTER

FIFTEEN

CONTRIBUTING GUIDE

First of all, thank you for taking the time to contribute!

By using the following guidelines, you can help us make UnifyFS even better.

15.1 Getting Started

15.1.1 Get UnifyFS

You can build and run UnifyFS by following these instructions.

15.1.2 Getting Help

To contact the UnifyFS team, send an email to the mailing list.

15.2 Reporting Bugs

Please contact us via the mailing list if you are not certain that you are experiencing a bug.

You can open a new issue and search existing issues using the issue tracker.

If you run into an issue, please search the issue tracker first to ensure the issue hasn’t been reported before. Open a new
issue only if you haven’t found anything similar to your issue.

Important: When opening a new issue, please include the following information at the top of the issue:

• What operating system (with version) you are using

• The UnifyFS version you are using

• Describe the issue you are experiencing

• Describe how to reproduce the issue

• Include any warnings or errors

• Apply any appropriate labels, if necessary

63

mailto:ecp-unifyfs@exascaleproject.org
mailto:ecp-unifyfs@exascaleproject.org
https://github.com/LLNL/UnifyFS/issues
https://github.com/LLNL/UnifyFS/issues

UnifyFS Documentation, Release 1.1

When a new issue is opened, it is not uncommon for developers to request additional information.

In general, the more detail you share about a problem the more quickly a developer can resolve it. For example,
providing a simple test case is extremely helpful. Be prepared to work with the developers investigating your issue.
Your assistance is crucial in providing a quick solution.

15.3 Suggesting Enhancements

Open a new issue in the issue tracker and describe your proposed feature. Why is this feature needed? What problem
does it solve? Be sure to apply the enhancement label to your issue.

15.4 Pull Requests

• All pull requests must be based on the current dev branch and apply without conflicts.

• Please attempt to limit pull requests to a single commit which resolves one specific issue.

• Make sure your commit messages are in the correct format. See the Commit Message Format section for more
information.

• When updating a pull request, squash multiple commits by performing a rebase (squash).

• For large pull requests, consider structuring your changes as a stack of logically independent patches which build
on each other. This makes large changes easier to review and approve which speeds up the merging process.

• Try to keep pull requests simple. Simple code with comments is much easier to review and approve.

• Test cases should be provided when appropriate.

• If your pull request improves performance, please include some benchmark results.

• The pull request must pass all regression tests before being accepted.

• All proposed changes must be approved by a UnifyFS project member.

15.5 Testing

All help is appreciated! If you’re in a position to run the latest code, consider helping us by reporting any functional
problems, performance regressions, or other suspected issues. By running the latest code on a wide range of realistic
workloads, configurations, and architectures we’re better able to quickly identify and resolve issues.

64 Chapter 15. Contributing Guide

https://github.com/LLNL/UnifyFS/issues
https://git-scm.com/docs/git-rebase

UnifyFS Documentation, Release 1.1

15.6 Documentation

As UnifyFS is continually improved and updated, it is easy for documentation to become out-of-date. Any contributions
to the documentation, no matter how small, is always greatly appreciated. If you are not in a position to update the
documentation yourself, please notify us via the mailing list of anything you notice that is missing or needs to be
changed.

15.6. Documentation 65

mailto:ecp-unifyfs@exascaleproject.org

UnifyFS Documentation, Release 1.1

66 Chapter 15. Contributing Guide

CHAPTER

SIXTEEN

DEVELOPER DOCUMENTATION

Here is our current documentation of how the internals of UnifyFS function for several basic operations.

UnifyFS Developer’s Documentation

Download PDF.

67

UnifyFS Documentation, Release 1.1

68 Chapter 16. Developer Documentation

CHAPTER

SEVENTEEN

STYLE GUIDES

17.1 Coding Conventions

UnifyFS follows the Linux kernel coding style except that code is indented using four spaces per level instead of tabs.
Please run make checkstyle to check your patch for style problems before submitting it for review.

17.1.1 Styling Code

The astyle tool can be used to apply much of the required code styling used in the project.

Listing 1: To apply style to the source file foo.c:

astyle --options=scripts/unifyfs.astyle foo.c

The unifyfs.astyle file specifies the options used for this project. For a full list of available astyle options, see http:
//astyle.sourceforge.net/astyle.html.

17.1.2 Verifying Style Checks

To check that uncommitted changes meet the coding style, use the following command:

git diff | ./scripts/checkpatch.sh

Tip: This command will only check specific changes and additions to files that are already tracked by git. Run the
command git add -N [<untracked_file>...] first in order to style check new files as well.

17.2 Commit Message Format

Commit messages for new changes must meet the following guidelines:

• In 50 characters or less, provide a summary of the change as the first line in the commit message.

• A body which provides a description of the change. If necessary, please summarize important information such
as why the proposed approach was chosen or a brief description of the bug you are resolving. Each line of the
body must be 72 characters or less.

69

https://www.kernel.org/doc/html/latest/process/coding-style.html
https://github.com/LLNL/UnifyFS/blob/dev/scripts/unifyfs.astyle
http://astyle.sourceforge.net/astyle.html
http://astyle.sourceforge.net/astyle.html

UnifyFS Documentation, Release 1.1

An example commit message for new changes is provided below.

Capitalized, short (50 chars or less) summary

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of an email and the rest of the text as the body. The blank
line separating the summary from the body is critical (unless you omit
the body entirely); tools like rebase can get confused if you run the
two together.

Write your commit message in the imperative: "Fix bug" and not "Fixed bug"
or "Fixes bug." This convention matches up with commit messages generated
by commands like git merge and git revert.

Further paragraphs come after blank lines.

- Bullet points are okay

- Typically a hyphen or asterisk is used for the bullet, followed by a
single space, with blank lines in between, but conventions vary here

- Use a hanging indent

70 Chapter 17. Style Guides

CHAPTER

EIGHTEEN

TESTING GUIDE

We can never have enough testing. Any additional tests you can write are always greatly appreciated.

18.1 Unit Tests

18.1.1 Implementing Tests

The UnifyFS Test Suite uses the Test Anything Protocol (TAP) and the Automake test harness. This test suite has two
types of TAP tests (shell scripts and C) to allow for testing multiple aspects of UnifyFS.

Shell Script Tests

Test cases in shell scripts are implemented with sharness, which is included in the UnifyFS source distribution. See
the file sharness.sh for all available test interfaces. UnifyFS-specific sharness code is implemented in scripts in the
directory sharness.d. Scripts in sharness.d are primarily used to set environment variables and define convenience
functions. All scripts in sharness.d are automatically included when your script sources sharness.sh.

The most common way to implement a test case with sharness is to use the test_expect_success() function. Your
script must first set a test description and source the sharness library. After all tests are defined, your script should call
test_done() to print a summary of the test run.

Test cases that demonstrate known breakage should use the sharness function test_expect_failure() to alert de-
velopers about the problem without causing the overall test suite to fail. Failing test cases should be tracked with github
issues.

Here is an example of a sharness test:

1 #!/bin/sh
2

3 test_description="My awesome test cases"
4

5 . $(dirname $0)/sharness.sh
6

7 test_expect_success "Verify some critical invariant" '
8 test 1 -eq 1
9 '

10

11 test_expect_failure "Prove this someday" '
12 test "P" == "NP"
13 '

(continues on next page)

71

https://testanything.org
https://github.com/chriscool/sharness
https://github.com/LLNL/UnifyFS/blob/dev/t/sharness.sh
https://github.com/LLNL/UnifyFS/tree/dev/t/sharness.d
https://github.com/LLNL/UnifyFS/tree/dev/t/sharness.d
https://github.com/LLNL/UnifyFS/tree/dev/t/sharness.d
https://github.com/LLNL/UnifyFS/blob/dev/t/sharness.sh

UnifyFS Documentation, Release 1.1

(continued from previous page)

14

15 # Various tests available to use inside test_expect_success/failure
16 test_expect_success "Show various available tests" '
17 test_path_is_dir /somedir
18 test_must_fail test_dir_is_empty /somedir
19 test_path_is_file /somedir/somefile
20 '
21

22 # Use test_set_prereq/test_have_prereq to conditionally skip tests
23 [[-n $(which h5cc 2>/dev/null)]] && test_set_prereq HAVE_HDF5
24 if test_have_prereq HAVE_HDF5; then
25 # run HDF5 tests
26 fi
27

28 # Can also check for prereq in individual test
29 test_expect_success HAVE_HDF5 "Run HDF5 test" '
30 # Run HDF5 test
31 '
32

33 test_done

C Program Tests

C programs use the libtap library to implement test cases. All available testing functions are viewable in the libtap
README. Convenience functions common to test cases written in C are implemented in the library lib/testutil.c. If
your C program needs to use environment variables set by sharness, it can be wrapped in a shell script that first sources
sharness.d/00-test-env.sh and sharness.d/01-unifyfs-settings.sh. Your wrapper shouldn’t normally source sharness.sh
itself because the TAP output from sharness might conflict with that from libtap.

The most common way to implement a test with libtap is to use the ok() function. TODO test cases that demonstrate
known breakage are surrounded by the libtap library calls todo() and end_todo().

Here are some examples of libtap tests:

1 #include "t/lib/tap.h"
2 #include "t/lib/testutil.h"
3 #include <string.h>
4

5 int main(int argc, char *argv[])
6 {
7 int result;
8

9 result = (1 == 1);
10 ok(result, "1 equals 1: %d", result);
11

12 /* Or put a function call directly in test */
13 ok(somefunc() == 42, "somefunc() returns 42");
14 ok(somefunc() == -1, "somefunc() should fail");
15

16 /* Use pass/fail for more complex code paths */
17 int x = somefunc();
18 if (x > 0) {

(continues on next page)

72 Chapter 18. Testing Guide

https://github.com/zorgnax/libtap
https://github.com/zorgnax/libtap/blob/master/README.md
https://github.com/zorgnax/libtap/blob/master/README.md
https://github.com/LLNL/UnifyFS/blob/dev/t/lib/testutil.c
https://github.com/LLNL/UnifyFS/blob/dev/t/sharness.d/00-test-env.sh
https://github.com/LLNL/UnifyFS/blob/dev/t/sharness.d/01-unifyfs-settings.sh
https://github.com/LLNL/UnifyFS/blob/dev/t/sharness.sh

UnifyFS Documentation, Release 1.1

(continued from previous page)

19 pass("somefunc() returned a valid value");
20 } else {
21 fail("somefunc() returned an invalid value");
22 }
23

24 /* Use is/isnt for string comparisions */
25 char buf[64] = {0};
26 ok(fread(buf, 12, 1, fd) == 1, "read 12 bytes into buf);
27 is(buf, "hello world", "buf is \"hello world\"");
28

29 /* Use cmp_mem to test first n bytes of memory */
30 char* a = "foo";
31 char* b = "bar";
32 cmp_mem(a, b, 3);
33

34 /* Use like/unlike to string match to a POSIX regex */
35 like("stranger", "^s.(r).*\\1$", "matches the regex");
36

37 /* Use dies_ok/lives_ok to test whether code causes an exit */
38 dies_ok({int x = 0/0;}, "divide by zero crashes");
39

40 /* Use todo for failing tests to be notified when they start passing */
41 todo("Prove this someday");
42 result = strcmp("P", "NP");
43 ok(result == 0, "P equals NP: %d", result);
44 end_todo;
45

46 /* Use skip/end_skip when a feature isn't implemented yet, or to
47 conditionally skip when a resource isn't available */
48 skip(TRUE, 2, "Reason for skipping tests");
49 ok(1);
50 ok(2);
51 end_skip;
52

53 #ifdef HAVE_SOME_FEATURE
54 ok(somefunc());
55 ok(someotherfunc());
56 #else
57 skip(TRUE, 2, "Don't have SOME_FEATURE");
58 end_skip;
59 #endif
60

61 done_testing();
62 }

Tip: Including the file and line number, as well as any useful variable values, in each test output can be very helpful
when a test fails or needs to be debugged.

ok(somefunc() == 42, "%s:%d somefunc() returns 42", __FILE__,
__LINE__);

Also note that errno is only set when an error occurs and is never set back to 0 implicitly by the system. When testing

18.1. Unit Tests 73

UnifyFS Documentation, Release 1.1

for a failure and using errno as part of the test, setting errno = 0 before the test will ensure a previous test error
will not affect the current test. In the following example, we also assign errno to another variable err for use in
constructing the test message. This is needed because the ok() macro may use system calls that set errno.

int err, rc;
errno = 0;
rc = systemcall();
err = errno;
ok(rc == -1 && err == ENOTTY,

"%s:%d systemcall() should fail (errno=%d): %s",
__FILE__, __LINE__, err, strerror(err));

18.1.2 Adding Tests

The UnifyFS Test Suite uses the Test Anything Protocol (TAP) and the Automake test harness. By convention, test
scripts and programs that output TAP are named with a “.t” extension.

To add a new test case to the test harness, follow the existing examples in t/Makefile.am. In short, add your test program
to the list of tests in the TESTS variable. If it is a shell script, also add it to check_SCRIPTS so that it gets included in
the source distribution tarball.

Test Suites

If multiple tests fit within the same category (i.e., tests for creat and mkdir both fall under tests for sysio) then create a
test suite to run those tests. This makes it so less duplication of files and code is needed in order to create additional
tests.

To create a new test suite, look at how it is currently done for the sysio_suite in t/Makefile.am and t/sys/sysio_suite.c:

If you’re testing C code, you’ll need to use environment variables set by sharness.

• Create a shell script, <####-suite-name>.t (the #### indicates the order in which they should be
run by the tap-driver), that wraps your suite and sources sharness.d/00-test-env.sh and sharness.d/01-
unifyfs-settings.sh

• Add this file to t/Makefile.am in the TESTS and check_SCRIPTS variables and add the name of the
file (but with a .t extension) this script runs to the libexec_PROGRAMS variable

You can then create the test suite file and any tests to be run in this suite.

• Create a <test_suite_name>.c file (i.e., sysio_suite.c) that will contain the main function and mpi job
that drives your suite

– Mount unifyfs from this file

– Call testing functions that contain the test cases (created in other files) in the order desired for
testing, passing the mount point to those functions

• Create a <test_suite_name>.h file that declares the names of all the test functions to be run by this
suite and include this in the <test_suite_name>.c file

• Create <test_name>.c files (i.e., open.c) that contains the testing function (i.e., open_test(char*
unifyfs_root)) that houses the variables and libtap tests needed to test that individual function

– Add the function name to the <test_suite_name>.h file

74 Chapter 18. Testing Guide

https://testanything.org
https://github.com/LLNL/UnifyFS/blob/dev/t/Makefile.am
https://github.com/LLNL/UnifyFS/blob/dev/t/Makefile.am
https://github.com/LLNL/UnifyFS/blob/dev/t/sys/sysio_suite.c
https://github.com/LLNL/UnifyFS/blob/dev/t/sharness.d/00-test-env.sh
https://github.com/LLNL/UnifyFS/blob/dev/t/sharness.d/01-unifyfs-settings.sh
https://github.com/LLNL/UnifyFS/blob/dev/t/sharness.d/01-unifyfs-settings.sh
https://github.com/LLNL/UnifyFS/blob/dev/t/Makefile.am

UnifyFS Documentation, Release 1.1

– Call the function from the <test_suite_name>.c file

The source files and flags for the test suite are then added to the bottom of t/Makefile.am.

• Add the <test_suite_name>.c and <test_suite_name>.h files to the <test_suite>_SOURCES vari-
able

• Add additional <test_name>.c files to the <test_suite>_SOURCES variable as they are created

• Add the associated flags for the test suite (if the suite is for testing wrappers, add a suite and flags for
both a gotcha and a static build)

Test Cases

For testing C code, test cases are written using the libtap library. See the C Program Tests section above on how to
write these tests.

To add new test cases to any existing suite of tests:

1. Simply add the desired tests (order matters) to the appropriate <test_name>.c file

If the test cases needing to be written don’t already have a file they belong in (i.e., testing a wrapper that doesn’t have
any tests yet):

1. Creata a <function_name>.c file with a function called <function_name>_test(char* unifyfs_root) that contains
the desired libtap test cases

2. Add the <function_name>_test to the corresponding <test_suite_name>.h file

3. Add the <function_name>.c file to the bottom of t/Makefile.am under the appropriate <test_suite>_SOURCES
variable(s)

4. The <function_name>_test function can now be called from the <test_suite_name>.c file

18.1.3 Running the Tests

To manually run the UnifyFS unit test suite, simply run make check in a single-node allocation from inside the t/
directory of wherever you built UnifyFS. E.g., if you built in a separate build/ directory, then do:

$ cd build/t
$ make check

If on a system where jobs are launched on a separate compute node, then use your systems local MPI job launch
command to run the unit tests:

$ cd build/t
$ srun -N1 -n1 make check

If changes are made to existing files in the test suite, the tests can be run again by simply doing make clean followed
by another make check.

Individual tests may be run by hand. The test 0001-setup.t should normally be run first to start the UnifyFS daemon.
E.g., to run just the 0100-sysio-gotcha.t tests, do:

$ make check TESTS='0001-setup.t 0100-sysio-gotcha.t 9010-stop-unifyfsd.t 9999-cleanup.t'

18.1. Unit Tests 75

https://github.com/LLNL/UnifyFS/blob/dev/t/Makefile.am
https://github.com/zorgnax/libtap
https://github.com/LLNL/UnifyFS/blob/dev/t/Makefile.am

UnifyFS Documentation, Release 1.1

Note: Running Unit Tests from Spack Install

If using Spack to install UnifyFS there are two ways to manually run the units tests:

1. Upon installation with Spack

spack install -v --test=root unifyfs

2. Manually from Spack’s build directory

Open the Spack config file:

spack config edit config

Provide Spack a staging path that is visible from a job allocation:

config:
build_stage:
- /visible/path/allocated/node
or build directly inside Spack's install directory
- $spack/var/spack/stage

Include the --keep-stage option when installing:

spack install --keep-stage unifyfs

spack cd unifyfs

cd spack-build/t

Run the tests from the package’s build environment:

spack build-env unifyfs make check

The tests in https://github.com/LLNL/UnifyFS/tree/dev/t are run automatically using GitHub Actions along with the
style checks when a pull request is created or updated. All pull requests must pass these tests before they will be
accepted.

Interpreting the Results

TAP Output

76 Chapter 18. Testing Guide

https://github.com/LLNL/UnifyFS/tree/dev/t
https://docs.github.com/en/actions

UnifyFS Documentation, Release 1.1

After a test runs, its result is printed out consisting of its status followed by its description and potentially a TODO/SKIP
message. Once all the tests have completed (either from being run manually or by GitHub Actions), the overall results
are printed out, as shown in the image on the right.

There are six possibilities for the status of each test: PASS, FAIL, XFAIL, XPASS, SKIP, and ERROR.

PASS
The test had the desired result.

FAIL
The test did not have the desired result. These must be fixed before any code changes can be accepted.

If a FAIL occurred after code had been added/changed then most likely a bug was introduced that caused the test
to fail. Some tests may fail as a result of earlier tests failing. Fix bugs that are causing earlier tests to fail first as,
once they start passing, subsequent tests are likely to start passing again as well.

XFAIL
The test was expected to fail, and it did fail.

An XFAIL is created by surrounding a test with todo() and end_todo. These are tests that have identified a
bug that was already in the code, but the cause of the bug hasn’t been found/resolved yet. An optional message
can be passed to the todo("message") call which will be printed after the test has run. Use this to explain how
the test should behave or any thoughts on why it might be failing. An XFAIL is not meant to be used to make a
failing test start “passing” if a bug was introduced by code changes.

XPASS
A test passed that was expected to fail. These must be fixed before any code changes can be accepted.

The relationship of an XPASS to an XFAIL is the same as that of a FAIL to a PASS. An XPASS will typically
occur when a bug causing an XFAIL has been fixed and the test has started passing. If this is the case, remove
the surrounding todo() and end_todo from the failing test.

SKIP
The test was skipped.

Tests are skipped because what they are testing hasn’t been implemented yet, or they apply to a feature/variant
that wasn’t included in the build (i.e., HDF5). A SKIP is created by surrounding the test(s) with skip(test,

18.1. Unit Tests 77

https://docs.github.com/en/actions

UnifyFS Documentation, Release 1.1

n, message) and end_skip where the test is what determines if these tests should be skipped and n is the
number of subsequent tests to skip. Remove these if it is no longer desired for those tests to be skipped.

ERROR
A test or test suite exited with a non-zero status.

When a test fails, the containing test suite will exit with a non-zero status, causing an ERROR. Fixing any test
failures should resolve the ERROR.

Running the Examples

To run any of these examples manually, refer to the Example Programs documentation.

The UnifyFS examples are also being used as integration tests with continuous integration tools such as Bamboo or
GitLab CI.

18.2 Integration Tests

The UnifyFS examples are being used as integration tests with continuation integration tools such as Bamboo or GitLab
CI.

To run any of these examples manually, refer to the Example Programs documentation.

18.2.1 Configuration Variables

Along with the already provided UnifyFS Configuration options/environment variables, there are environment variables
used by the integration testing suite that can also be set in order to change the default behavior.

Key Variables

These environment variables can be set prior to sourcing the t/ci/001-setup.sh script and will affect how the overall
integration suite operates.

UNIFYFS_INSTALL

USAGE: UNIFYFS_INSTALL=/path/to/dir/containing/UnifyFS/bin/directory

The full path to the directory containing the bin/ and libexec/ directories for your UnifyFS installation. Set this envar
to prevent the integration tests from searching for a UnifyFS installation automatically. Where the automatic search
starts can be altered by setting the $BASE_SEARCH_DIR variable.

78 Chapter 18. Testing Guide

https://github.com/LLNL/UnifyFS/tree/dev/examples/src
https://www.atlassian.com/software/bamboo
https://about.gitlab.com
https://github.com/LLNL/UnifyFS/tree/dev/examples/src
https://www.atlassian.com/software/bamboo
https://about.gitlab.com
https://about.gitlab.com

UnifyFS Documentation, Release 1.1

UNIFYFS_CI_NPROCS

USAGE: UNIFYFS_CI_NPROCS=<number-of-process-per-node>

The number of processes to use per node inside a job allocation. This defaults to 1 process per node. This can be
adjusted if more processes are desired on multiple nodes or multiple processes are desired on a single node.

UNIFYFS_CI_TEMP_DIR

USAGE: UNIFYFS_CI_TEMP_DIR=/path/for/temporary/files/created/by/UnifyFS

Can be used as a shortcut to set UNIFYFS_RUNSTATE_DIR and UNIFYFS_META_DB_PATH to the same path. This envar
defaults to UNIFYFS_CI_TEMP_DIR=${TMPDIR}/unifyfs.${USER}.${JOB_ID}.

UNIFYFS_CI_LOG_CLEANUP

USAGE: UNIFYFS_CI_LOG_CLEANUP=yes|YES|no|NO

In the event $UNIFYFS_LOG_DIR has not been set, the logs will be put in $SHARNESS_TRASH_DIRECTORY, as set up
by sharness.sh, and cleaned up automatically after the tests have run. The logs will be in a <system-name>_<jobid>/
subdirectory. Should any tests fail, sharness does not clean up the trash directory for debugging purposes. Setting
UNIFYFS_CI_LOG_CLEANUP=no|NO will move the <system-name>_<jobid>/ logs directory to $UNIFYFS_CI_DIR
(the directory containing the integration testing scripts) to allow them to persist even when all tests pass. This envar
defauls to yes.

Note: Setting $UNIFYFS_LOG_DIR will put all created logs in the designated path and will not clean them up.

UNIFYFS_CI_HOST_CLEANUP

USAGE: UNIFYFS_CI_HOST_CLEANUP=yes|YES|no|NO

After all tests have run, the nodes on which the tests were ran will automatically be cleaned up. This cleanup
includes ensuring unifyfsd has stopped and deleting any files created by UnifyFS or its dependencies. Set
UNIFYFS_CI_HOST_CLEANUP=no|NO to skip cleaning up. This envar defaults to yes.

Note: PDSH is required for cleanup and cleaning up is simply skipped if not found.

UNIFYFS_CI_CLEANUP

USAGE: UNIFYFS_CI_CLEANUP=yes|YES|no|NO

Setting this to no|NO sets both $CI_LOG_CLEANUP and $UNIFYFS_CI_HOST_CLEANUP to no|NO.

18.2. Integration Tests 79

https://github.com/LLNL/UnifyFS/blob/dev/t/sharness.sh
https://github.com/chaos/pdsh

UnifyFS Documentation, Release 1.1

UNIFYFS_CI_TEST_POSIX

USAGE: UNIFYFS_CI_TEST_POSIX=yes|YES|no|NO

Determines whether any <example-name>-posix tests should be run since they require a real mountpoint to exist.

This envar defaults to no. Setting this to yes will run the posix version of tests along with the regular tests. When
$UNIFYFS_MOUNTPOINT is set to a existing directory, this option is set to no. This is to allow running the tests a first
time with a fake mountpoint while the posix tests use an existing mountpoint. Then the regular tests can be run again
using an existing mountpoint and the posix tests won’t be run twice.

An example of testing a posix example can be see below.

Note: The posix mountpoint envar, UNIFYFS_CI_POSIX_MP, is set to be located inside
$SHARNESS_TRASH_DIRECTORY automatically and cleaned up afterwards. However, this envar can be set be-
fore running the integration tests as well. If setting this, ensure that it is a shared file system that all allocated nodes
can see.

Additional Variables

After sourcing the t/ci/001-setup.sh script there will be additional variables available that may be useful when writ-
ing/adding additional tests.

Directory Structure

File structure here is assuming UnifyFS was cloned to $HOME.

UNIFYFS_CI_DIR
Directory containing the CI testing scripts. $HOME/UnifyFS/t/ci/

SHARNESS_DIR
Directory containing the base sharness scripts. $HOME/UnifyFS/t/

UNIFYFS_SOURCE_DIR
Directory containing the UnifyFS source code. $HOME/UnifyFS/

BASE_SEARCH_DIR
Parent directory containing the UnifyFS source code. Starting place to auto search for UnifyFS install when
$UNIFYFS_INSTALL isn’t provided. $HOME/

Executable Locations

UNIFYFS_BIN
Directory containing unifyfs and unifyfsd. $UNIFYFS_INSTALL/bin

UNIFYFS_EXAMPLES
Directory containing the compiled examples. $UNIFYFS_INSTALL/libexec

80 Chapter 18. Testing Guide

https://github.com/LLNL/UnifyFS/tree/dev/examples/src

UnifyFS Documentation, Release 1.1

Resource Managers

JOB_RUN_COMMAND
The base MPI job launch command established according to the detected resource manager, number of allocated
nodes, and $UNIFYFS_CI_NPROCS.

The LSF variables below will also affect the default version of this command when using that resource manager.

JOB_RUN_ONCE_PER_NODE
MPI job launch command to only run a single process on each allocated node established according to the detected
resource manager.

JOB_ID
The ID assigned to the current CI job as established by the detected resource manager.

LSF

Additional variables used by the LSF resource manager to determine how jobs are launched with $JOB_RUN_COMMAND.
These can also be set prior to sourcing the t/ci/001-setup.sh script and will affect how the integration tests run.

UNIFYFS_CI_NCORES
Number of cores-per-resource-set to use. Defaults to 20.

UNIFYFS_CI_NRS_PER_NODE
Number of resource-sets-per-node to use. Defaults to 1.

UNIFYFS_CI_NRES_SETS
Total number of resource sets to use. Defaults to (number_of_nodes) * ($UNIFYFS_CI_NRS_PER_NODE).

Misc

KB
210

MB
220

GB
230

18.2.2 Running the Tests

Attention: UnifyFS’s integration test suite requires MPI and currently only supports srun and jsrun MPI launch
commands.

UnifyFS’s integration tests are primarly set up to run distinct suites of tests, however they can also all be run at once or
manually for more fine-grained control.

The testing scripts in t/ci depend on sharness, which is set up in the containing t/ directory. These tests will not function
properly if moved or if the sharness files cannot be found.

Before running any tests, ensure either compute nodes have been interactively allocated or run via a batch job submis-
sion.

18.2. Integration Tests 81

https://github.com/LLNL/UnifyFS/blob/dev/t/ci
https://github.com/chriscool/sharness

UnifyFS Documentation, Release 1.1

Make sure all dependencies are installed and loaded.

The t/ci/RUN_CI_TESTS.sh script is designed to simplify running various suites of tests.

RUN_CI_TESTS.sh Script

Usage: ./RUN_CI_TESTS.sh [-h] -s {all|[writeread,[write|read],pc,stage]} -t {all|[posix,
→˓mpiio]}

Any previously set UnifyFS environment variables will take precedence.

Options:
-h, --help

Print this help message

-s, --suite {all|[writeread,[write|read],pc,stage]}
Select the test suite(s) to be run
Takes a comma-separated list of available suites

-t, --type {all|[posix,mpiio]}
Select the type(s) of each suite to be run
Takes a comma-separated list of available types
Required with --suite unless stage is the only suite selected

Note: Running Integration Tests from Spack Build

Running the integration tests from a Spack installation of UnifyFS requires telling Spack to use a different location for
staging the build in order to have the source files available from inside a job allocation.

Open the Spack config file:

spack config edit config

Provide a staging path that is visible to all nodes from a job allocations:

config:
build_stage:
- /visible/path/from/all/allocated/nodes
or build directly inside Spack's install directory
- $spack/var/spack/stage

Include the --keep-stage option when installing:

spack install --keep-stage unifyfs

Allocate compute nodes and spawn a new shell containing the package’s build environment:

spack build-env unifyfs bash

Run the integration tests:

spack load unifyfs

spack cd unifyfs

cd t/ci

Run tests using any of the following formats

82 Chapter 18. Testing Guide

https://github.com/spack/spack

UnifyFS Documentation, Release 1.1

Individual Suites

To run individual test suites, indicate the desired suite(s) and type(s) when running RUN_CI_TESTS.sh. E.g.:

$./RUN_CI_TESTS.sh -s writeread -t mpiio

or

$ prove -v RUN_CI_TESTS.sh :: -s writeread -t mpiio

The -s|--suite and -t|--type options flag which set(s) of tests to run. Each suite (aside from stage) requires a
type to be selected as well. Note that if all is selected, the other arguments are redundant. If the read suite is selected,
then the write argument is redundant.

Available suites: all|[writeread,[write,read],pc,stage]
all: run all suites writeread: run writeread tests write: run write tests only (redundant if read also set) read: run
write then read tests (all-hosts producer-consumer tests) pc: run producer-consumer tests (disjoint sets of hosts)
stage: run stage tests (type not required)

Available types: all|[posix,mpiio]
all: run all types posix: run posix versions of above suites mpiio: run mpiio versions of above suites

All Tests

Warning: If running all or most tests within a single allocation, a large amount of time and storage space
will be required. Even if enough of both are available, it is still possible the run may hit other limitations (e.g.,
client_max_files, client_max_active_requests, server_max_app_clients). To avoid this, run indi-
vidual suites from separate job allocations.

To run all of the tests, run RUN_CI_TESTS.sh with the all suites and types options.

$./RUN_CI_TESTS.sh -s all -t all

or

$ prove -v RUN_CI_TESTS.sh :: -s all -t all

Subsets of Individual Suites

Subsets of individual test suites can be run manually. This can be useful when wanting more fine-grained control or
for testing a specific configuration. To run manually, the testing functions and variables need to be set up first and then
the UnifyFS servers need to be started.

First source the t/ci/001-setup.sh script whereafter sharness will change directories to the
$SHARNESS_TRASH_DIRECTORY. To account for this, prefix each subsequent script with $UNIFYFS_CI_DIR/
when sourcing. Start the servers next by sourcing 002-start-server.sh followed by each desired test script. When
finished, source 990-stop-server.sh last to stop the servers, report the results, and clean up.

$. ./001-setup.sh
$. $UNIFYFS_CI_DIR/002-start-server.sh
$. $UNIFYFS_CI_DIR/100-writeread-tests.sh --laminate --shuffle --mpiio
$. $UNIFYFS_CI_DIR/990-stop-server.sh

18.2. Integration Tests 83

UnifyFS Documentation, Release 1.1

The various CI test suites can be run multiple times with different behaviors. These behaviors are continually being
extended. The -h|–help option for each script can show what alternate behaviors are currently implemented along with
additional information for that particular suite.

[prompt]$./100-writeread-tests.sh --help
Usage: 100-writeread-tests.sh [options...]

options:
-h, --help print help message
-l, --laminate laminate between writing and reading
-M, --mpiio use MPI-IO instead of POSIX I/O
-x, --shuffle read different data than written

18.2.3 Adding New Tests

In order to add additional tests for different workflows, create a script after the fashion of t/ci/100-writeread-
tests.sh where the prefixed number indicates the desired order for running the tests. Then source that script in
t/ci/RUN_CI_TESTS.sh in the desired order. The different test suite scripts themselves can also be edited to add/change
the number, types, and various behaviors each suite will execute.

Just like the helpers functions found in sharness.d, there are continuous integration helper functions (see below for
more details) available in t/ci/ci-functions.sh. These exist to help make adding new tests as simple as possible.

One particularly useful function is unify_run_test(). Currently, this function is set up to work for the write, read,
writeread, and checkpoint-restart examples. This function sets up the MPI job run command and default options as
well as any default arguments wanted by all examples. See below for details.

Testing Helper Functions

There are helper functions available in t/ci/ci-functions.sh that can make running and testing the examples much easier.
These may get adjusted over time to accommodate other examples, or additional functions may need to be written.
Some of the main helper functions that might be useful for running examples are:

unify_run_test()

USAGE: unify_run_test app_name "app_args" [output_variable_name]

Given a example application name and application args, this function runs the example with the appropriate MPI runner
and args. This function is meant to make running the cr, write, read, and writeread examples as easy as possible.

The build_test_command() function is called by this function which automatically sets any options that are always
wanted (-vkfo as well as -U and the appropriate -m if posix test or not). The stderr output file is also created (based on
the filename that is autogenerated) and the appropriate option is set for the MPI job run command.

Args that can be passed in are ([-cblnpx][-A|-L|-M|-N|-P|-S|-V]). All other args (see Running the Examples) are set
automatically, including the outfile and filename (which are generated based on the input $app_name and $app_args).

The third parameter is an optional “pass-by-reference” parameter that can contain the variable name for the resulting
output to be stored in, allowing this function to be used in one of two ways:

84 Chapter 18. Testing Guide

https://github.com/LLNL/UnifyFS/blob/dev/t/ci/100-writeread-tests.sh
https://github.com/LLNL/UnifyFS/blob/dev/t/ci/100-writeread-tests.sh
https://github.com/LLNL/UnifyFS/blob/dev/t/ci/RUN_CI_TESTS.sh
https://github.com/LLNL/UnifyFS/tree/dev/t/sharness.d
https://github.com/LLNL/UnifyFS/blob/dev/t/ci/ci-functions.sh
https://github.com/LLNL/UnifyFS/blob/dev/t/ci/ci-functions.sh

UnifyFS Documentation, Release 1.1

Listing 1: Using command substitution

app_output=$(unify_run_test $app_name "$app_args")

or

Listing 2: Using a “pass-by-reference” variable

unifyfs_run_test $app_name "$app_args" app_output

This function returns the return code of the executed example as well as the output produced by running the example.

Note: If unify_run_test() is simply called with only two arguments and without using command substitution, the
resulting output will be sent to the standard output.

The results can then be tested with sharness:

basetest=writeread
runmode=static

app_name=${basetest}-${runmode}
app_args="-p n1 -n32 -c $((16 * $KB)) -b $MB

unify_run_test $app_name "$app_args" app_output
rc=$?
line_count=$(echo "$app_output" | wc -l)

test_expect_success "$app_name $app_args: (line_count=$line_count, rc=$rc)" '
test $rc = 0 &&
test $line_count = 8

'

get_filename()

USAGE: get_filename app_name app_args [app_suffix]

Builds and returns the filename with the provided suffix based on the input app_name and app_args.

The filename in $UNIFYFS_MOUNTPOINT will be given a .app suffix.

This allows tests to get what the filename will be in advance if called from a test suite. This can be used for posix tests
to ensure the file showed up in the mount point, as well as for read, cp, stat tests that potentially need the filename from
a previous test prior to running.

Error logs and outfiles are also created with this filename, with a .err or .out suffix respectively, and placed in the
logs directory.

Returns a string with the spaces removed and hyphens replaced by underscores.

get_filename write-static "-p n1 -n 32 -c 1024 -b 1048576" ".app"
write-static_pn1_n32_c1KB_b1MB.app

Some uses cases may be:

• posix tests where the file existence is checked for after a test was run

18.2. Integration Tests 85

https://github.com/chriscool/sharness

UnifyFS Documentation, Release 1.1

• read, cp, or stat tests where an already existing filename from a prior test might be needed

For example:

basetest=writeread
runmode=posix

app_name=${basetest}-${runmode}
app_args="-p nn -n32 -c $((16 * $KB)) -b $MB

unify_run_test $app_name "$app_args" app_output
rc=$?
line_count=$(echo "$app_output" | wc -l)
filename=$(get_filename $app_name "$app_args" ".app")

test_expect_success POSIX "$app_name $app_args: (line_count=$line_count, rc=$rc)" '
test $rc = 0 &&
test $line_count = 8 &&
test_path_has_file_per_process $UNIFYFS_CI_POSIX_MP $filename

'

Additional Functions

There are other convenience functions used bythat my be helpful in writing/adding tests are also found in t/ci/ci-
functions.sh:

find_executable()
USAGE: find_executable abs_path *file_name|*path/file_name [prune_path]

Locate the desired executable file when provided an absolute path of where to start searching, the name of the
file with an optional preceding path, and an optional prune_path, or path to omit from the search.

Returns the path of the first executable found with the given name and optional prefix.

elapsed_time()
USAGE: elapsed_time start_time_in_seconds end_time_in_seconds

Calculates the elapsed time between two given times.

Returns the elapsed time formatted as HH:MM:SS.

format_bytes()
USAGE: format_bytes int

Returns the input bytes formatted as KB, MB, or GB (1024 becomes 1KB).

Sharness Helper Functions

There are also additional sharness functions for testing the examples available when t/ci/ci-functions.sh is sourced.
These are to be used with sharness for testing the results of running the examples with or without using the Example
Helper Functions.

86 Chapter 18. Testing Guide

https://github.com/LLNL/UnifyFS/blob/dev/t/ci/ci-functions.sh
https://github.com/LLNL/UnifyFS/blob/dev/t/ci/ci-functions.sh
https://github.com/LLNL/UnifyFS/blob/dev/t/ci/ci-functions.sh
https://github.com/chriscool/sharness

UnifyFS Documentation, Release 1.1

process_is_running()

USAGE: process_is_running process_name seconds_before_giving_up

Checks if a process with the given name is running on every host, retrying up to a given number of seconds before
giving up. This function overrides the process_is_running() function used by the UnifyFS unit tests. The primary
difference being that this function checks for the process on every host.

Expects two arguments:

• $1 - Name of a process to check for

• $2 - Number of seconds to wait before giving up

test_expect_success "unifyfsd is running" '
process_is_running unifyfsd 5

'

process_is_not_running()

USAGE: process_is_not_running process_name seconds_before_giving_up

Checks if a process with the given name is not running on every host, retrying up to a given number of seconds before
giving up. This function overrides the process_is_not_running() function used by the UnifyFS unit tests. The
primary difference being that this function checks that the process is not running on every host.

Expects two arguments:

• $1 - Name of a process to check for

• $2 - Number of seconds to wait before giving up

test_expect_success "unifyfsd is not running" '
process_is_not_running unifyfsd 5

'

test_path_is_dir()

USAGE: test_path_is_dir dir_name [optional]

Checks that a directory with the given name exists and is accessible from each host. Does NOT need to be a shared
directory. This function overrides the test_path_is_dir() function in sharness.sh, the primary difference being
that this function checks for the dir on every host in the allocation.

Takes once argument with an optional second:

• $1 - Path of the directory to check for

• $2 - Can be given to provide a more precise diagnosis

test_expect_success "$dir_name is an existing directory" '
test_path_is_dir $dir_name

'

18.2. Integration Tests 87

https://github.com/LLNL/UnifyFS/blob/dev/t/sharness.sh

UnifyFS Documentation, Release 1.1

test_path_is_shared_dir()

USAGE: test_path_is_shared_dir dir_name [optional]

Check if same directory (actual directory, not just name) exists and is accessible from each host.

Takes once argument with an optional second:

• $1 - Path of the directory to check for

• $2 - Can be given to provide a more precise diagnosis

test_expect_success "$dir_name is a shared directory" '
test_path_is_shared_dir $dir_name

'

test_path_has_file_per_process()

USAGE: test_path_has_file_per_process dir_path file_name [optional]

Check if the provided directory path contains a file-per-process of the provided file name. Assumes the directory is a
shared directory.

Takes two arguments with an optional third:

• $1 - Path of the shared directory to check for the files

• $2 - File name without the appended process number

• $3 - Can be given to provided a more precise diagnosis

test_expect_success "$dir_name has file-per-process of $file_name" '
test_path_has_file_per_process $dir_name $file_name

'

There are other helper functions available as well, most of which are being used by the test suite itself. Details on these
functions can be found in their comments in t/ci/ci-functions.sh.

88 Chapter 18. Testing Guide

https://github.com/LLNL/UnifyFS/blob/dev/t/ci/ci-functions.sh

CHAPTER

NINETEEN

WRAPPER GUIDE

Warning: This document is out-of-date as the process for generating unifyfs_list.txt has bugs which causes the
generation of gotcha_map_unifyfs_list.h to have bugs as well. More information on this can be found in issue #172.

An updated guide and scripts needs to be created for writing and adding new wrappers to UnifyFS.

The files in client/check_fns/ folder help manage the set of wrappers that are implemented. In particular, they are used
to enable a tool that detects I/O routines used by an application that are not yet supported in UnifyFS. They are also
used to generate the code required for GOTCHA.

• fakechroot_list.txt - lists I/O routines from fakechroot

• gnulibc_list.txt - I/O routines from libc

• cstdio_list.txt - I/O routines from stdio

• posix_list.txt - I/O routines in POSIX

• unifyfs_list.txt - list of wrappers in UnifyFS

• unifyfs_unsupported_list.txt - list of wrappers in UnifyFS that are implemented, but not supported

19.1 unifyfs_check_fns Tool

This tool identifies the set of I/O calls used in an application by running nm on the executable. It reports any I/O routines
used by the app, which are not supported by UnifyFS. If an application uses an I/O routine that is not supported, it likely
cannot use UnifyFS. If the tool does not report unsupported wrappers, the app may work with UnifyFS but it is not
guaranteed to work.

unifyfs_check_fns <executable>

89

https://github.com/LLNL/UnifyFS/issues/172
https://github.com/LLNL/UnifyFS/tree/dev/client/check_fns
https://github.com/LLNL/UnifyFS/blob/dev/client/check_fns/fakechroot_list.txt
https://github.com/LLNL/UnifyFS/blob/dev/client/check_fns/gnulibc_list.txt
https://github.com/LLNL/UnifyFS/blob/dev/client/check_fns/cstdio_list.txt
https://github.com/LLNL/UnifyFS/blob/dev/client/check_fns/posix_list.txt
https://github.com/LLNL/UnifyFS/blob/dev/client/check_fns/unifyfs_list.txt
https://github.com/LLNL/UnifyFS/blob/dev/client/check_fns/unifyfs_unsupported_list.txt

UnifyFS Documentation, Release 1.1

19.2 Building the GOTCHA List

The gotcha_map_unifyfs_list.h file contains the code necessary to wrap I/O functions with GOTCHA. This is generated
from the unifyfs_list.txt file by running the following command:

python unifyfs_translate.py unifyfs_list

19.3 Commands to Build Files

19.3.1 fakechroot_list.txt

The fakechroot_list.txt file lists I/O routines implemented in fakechroot. This list was generated using the following
commands:

git clone https://github.com/fakechroot/fakechroot.git fakechroot.git
cd fakechroot.git/src
ls *.c > fakechroot_list.txt

19.3.2 gnulibc_list.txt

The gnulibc_list.txt file lists I/O routines available in libc. This list was written by hand using information from http:
//www.gnu.org/software/libc/manual/html_node/I_002fO-Overview.html#I_002fO-Overview.

19.3.3 cstdio_list.txt

The cstdio_list.txt file lists I/O routines available in libstdio. This list was written by hand using information from
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf.

19.3.4 unifyfs_list.txt

The unifyfs_list.txt file specifies the set of wrappers in UnifyFS. Most but not all such wrappers are supported. The
command to build unifyfs list:

grep UNIFYFS_WRAP ../src/*.c > unifyfs_list.txt

19.3.5 unifyfs_unsupported_list.txt

The unifyfs_unsupported_list.txt file specifies wrappers that are in UnifyFS, but are known to not actually be supported.
This list is written by hand.

90 Chapter 19. Wrapper Guide

https://github.com/LLNL/UnifyFS/blob/dev/client/src/gotcha_map_unifyfs_list.h
https://github.com/LLNL/UnifyFS/blob/dev/client/check_fns/fakechroot_list.txt
https://github.com/LLNL/UnifyFS/blob/dev/client/check_fns/gnulibc_list.txt
http://www.gnu.org/software/libc/manual/html_node/I_002fO-Overview.html#I_002fO-Overview
http://www.gnu.org/software/libc/manual/html_node/I_002fO-Overview.html#I_002fO-Overview
https://github.com/LLNL/UnifyFS/blob/dev/client/check_fns/cstdio_list.txt
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
https://github.com/LLNL/UnifyFS/blob/dev/client/check_fns/unifyfs_list.txt
https://github.com/LLNL/UnifyFS/blob/dev/client/check_fns/unifyfs_unsupported_list.txt

CHAPTER

TWENTY

ADDING RPC FUNCTIONS WITH MARGO LIBRARY

In this section, we describe how to add an RPC function using the Margo library API.

Note: The following documentation uses unifyfs_mount_rpc() as an example client-server RPC function to
demonstrate the required code modifications.

20.1 Common

1. Define structs for the input and output parameters of your RPC handler.

The struct definition macro MERCURY_GEN_PROC() is used to define both input and output parameters.
For client-server RPCs, the definitions should be placed in common/src/unifyfs_client_rpcs.h,
while server-server RPC structs are defined in common/src/unifyfs_server_rpcs.h.

The input parameters struct should contain all values the client needs to pass to the server handler
function. The output parameters struct should contain all values the server needs to pass back to the
client upon completion of the handler function. The following shows the input and output structs used
by unifyfs_mount_rpc().

MERCURY_GEN_PROC(unifyfs_mount_in_t,
((int32_t)(dbg_rank))
((hg_const_string_t)(mount_prefix))
((hg_const_string_t)(client_addr_str)))

MERCURY_GEN_PROC(unifyfs_mount_out_t,
((int32_t)(app_id))
((int32_t)(client_id))
((int32_t)(ret)))

Note: Passing some types can be an issue. Refer to the Mercury documentation for supported types: https:
//mercury-hpc.github.io/documentation/ (look under Predefined Types). If your type is not predefined, you will need
to either convert it to a supported type or write code to serialize/deserialize the input/output parameters. Phil Carns
said he has starter code for this, since much of the code is similar.

91

https://mercury-hpc.github.io/documentation/
https://mercury-hpc.github.io/documentation/

UnifyFS Documentation, Release 1.1

20.2 Server

1. Implement the RPC handler function for the server.

This is the function that will be invoked on the client and executed on the server. Client-server RPC
handler functions are implemented in server/src/unifyfs_client_rpc.c, while server-server
RPC handlers go in server/src/unifyfs_p2p_rpc.c or server/src/unifyfs_group_rpc.c.

All the RPC handler functions follow the same protoype, which is passed a Mercury handle as the only
argument. The handler function should use margo_get_input() to retrieve the input parameters
struct provided by the client. After the RPC handler finishes its intended action, it replies using
margo_respond(), which takes the handle and output parameters struct as arguments. Finally, the
handler function should release the input struct using margo_free_input(), and the handle using
margo_destroy(). See the existing RPC handler functions for more info.

After implementing the handler function, place the Margo RPC handler definition macro immediately
following the function.

static void unifyfs_mount_rpc(hg_handle_t handle)
{

...
}
DEFINE_MARGO_RPC_HANDLER(unifyfs_mount_rpc)

2. Register the server RPC handler with margo.

In server/src/margo_server.c, update the client-server RPC registration function
register_client_server_rpcs() to include a registration macro for the new RPC han-
dler. As shown below, the last argument to MARGO_REGISTER() is the handler function address. The
prior two arguments are the input and output parameters structs.

MARGO_REGISTER(unifyfsd_rpc_context->mid,
"unifyfs_mount_rpc",
unifyfs_mount_in_t,
unifyfs_mount_out_t,
unifyfs_mount_rpc);

20.3 Client

1. Add a Mercury id for the RPC handler to the client RPC context.

In client/src/margo_client.h, update the ClientRpcIds structure to add a new hg_id_t
<name>_id variable to hold the RPC handler id.

typedef struct ClientRpcIds {
...
hg_id_t mount_id;

}

2. Register the RPC handler with Margo.

In client/src/margo_client.c, update register_client_rpcs() to register the new RPC
handler by its name using CLIENT_REGISTER_RPC(<name>), which will store its Mercury id in the
<name>_id structure variable defined in the first step. For example:

92 Chapter 20. Adding RPC Functions With Margo Library

UnifyFS Documentation, Release 1.1

CLIENT_REGISTER_RPC(mount);

3. Define and implement an invocation function that will execute the RPC.

The declaration should be placed in client/src/margo_client.h, and the definition should go in
client/src/margo_client.c.

int invoke_client_mount_rpc(unifyfs_client* client, ...);

A handle for the RPC is obtained using create_handle(), which takes the the id of the RPC as
its only parameter. The RPC is actually initiated using forward_to_server(), where the RPC
handle, input struct address, and RPC timeout are given as parameters. Use margo_get_output()
to obtain the returned output parameters struct, and release it with margo_free_output(). Finally,
margo_destroy() is used to release the RPC handle. See the existing invocation functions for more
info.

Note: The general workflow for creating new RPC functions is the same if you want to invoke an RPC on the server, and
execute it on the client. One difference is that you will have to pass NULL to the last parameter of MARGO_REGISTER()
on the server, and on the client the last parameter to MARGO_REGISTER() will be the name of the RPC handler
function. To execute RPCs on the client it needs to be started in Margo as a SERVER, and the server needs to know the
address of the client where the RPC will be executed. The client has already been configured to do those two things, so
the only change going forward is how MARGO_REGISTER() is called depending on where the RPC is being executed
(client or server).

20.3. Client 93

UnifyFS Documentation, Release 1.1

94 Chapter 20. Adding RPC Functions With Margo Library

CHAPTER

TWENTYONE

INDICES AND TABLES

• genindex

• modindex

• search

95

	Overview
	High Level Design
	UnifyFS Citation
	UnifyFS Videos
	Quickstart
	ECP Tutorial

	Definitions
	Job
	Run or Job Step

	Assumptions and Semantics
	System Requirements
	Application Behavior
	Consistency Model
	Commit Consistency Semantics in UnifyFS
	Lamination Consistency Semantics in UnifyFS
	File System Consistency Behavior

	Additional File System Behavior Considerations
	Failure Behavior

	Limitations and Workarounds
	General Limitations
	Data Consistency
	File Locking
	Directory Operations

	MPI-IO Limitations
	Data Consistency
	Relaxed MPI_File_sync semantics

	ROMIO Limitations
	Data Consistency
	ROMIO Synchronizing Flush Hint
	ROMIO Data Visibility Hint

	File Locking
	MPI-I/O Atomic File Consistency
	Data Sieving
	MPI-I/O Shared File Pointers

	HDF5 Limitations
	Data Consistency
	HDF5 FILE_SYNC

	PnetCDF Limitations
	Data Consistency

	Build UnifyFS
	Build UnifyFS and Dependencies with Spack
	Install Spack
	Build and Install UnifyFS

	Build Dependencies with Spack, Build UnifyFS with Autotools
	Build the Dependencies
	Build UnifyFS

	Build Dependencies with Bootstrap and Build UnifyFS with Autotools
	Build the Dependencies
	Build UnifyFS

	Configure Options
	Fortran
	GOTCHA
	HDF5
	PMI2/PMIx Key-Value Store
	SPATH
	Transparent Mounting for MPI Applications
	Intercepting I/O Calls from Shell Commands

	Integrate the UnifyFS API
	Include the UnifyFS Header
	Mounting
	Unmounting

	Link with the UnifyFS library
	Static link
	Dynamic link
	C
	Fortran

	LD_PRELOAD

	UnifyFS Configuration
	System Configuration File (unifyfs.conf)
	Environment Variables
	Command Line Options

	Run UnifyFS
	Start UnifyFS
	Stop UnifyFS
	Resource Manager Job Integration
	Transferring Data In and Out of UnifyFS
	Transfer at Server Start/Terminate
	Manifest File

	Transfer During Job
	UnifyFS Stage Executable

	UnifyFS LS Executable

	Example Programs
	Locations of Examples
	Install Location
	Installed with Spack
	Installed with Autotools

	Build Location
	Built with Spack
	Built with Autotools
	Manual Build from Installed UnifyFS

	Running the Examples
	Producer-Consumer Workflow

	UnifyFS API for I/O Middleware
	Library API Purpose
	Library API Concepts
	Namespace (aka Mountpoint)
	File System Handle
	Global File Identifier

	Library API Types
	Example Library API Usage
	File System Handle Initialization and Finalization
	File Creation, Use, and Removal
	Batched File I/O
	Batched File Transfers
	More Examples

	UnifyFS Dependencies
	Required
	Optional

	UnifyFS Error Codes
	VerifyIO: Determine UnifyFS Compatibility
	Recorder and VerifyIO
	VerifyIO Guide
	Build
	Run
	Interpreting Results
	Conflict Detector Results
	VerifyIO Results
	Compatible with UnifyFS
	Incompatible with UnifyFS

	Contributing Guide
	Getting Started
	Get UnifyFS
	Getting Help

	Reporting Bugs
	Suggesting Enhancements
	Pull Requests
	Testing
	Documentation

	Developer Documentation
	Style Guides
	Coding Conventions
	Styling Code
	Verifying Style Checks

	Commit Message Format

	Testing Guide
	Unit Tests
	Implementing Tests
	Shell Script Tests
	C Program Tests

	Adding Tests
	Test Suites
	Test Cases

	Running the Tests
	Interpreting the Results
	Running the Examples

	Integration Tests
	Configuration Variables
	Key Variables
	UNIFYFS_INSTALL
	UNIFYFS_CI_NPROCS
	UNIFYFS_CI_TEMP_DIR
	UNIFYFS_CI_LOG_CLEANUP
	UNIFYFS_CI_HOST_CLEANUP
	UNIFYFS_CI_CLEANUP
	UNIFYFS_CI_TEST_POSIX

	Additional Variables
	Directory Structure
	Executable Locations
	Resource Managers
	LSF
	Misc

	Running the Tests
	Individual Suites
	All Tests
	Subsets of Individual Suites

	Adding New Tests
	Testing Helper Functions
	unify_run_test()
	get_filename()
	Additional Functions

	Sharness Helper Functions
	process_is_running()
	process_is_not_running()
	test_path_is_dir()
	test_path_is_shared_dir()
	test_path_has_file_per_process()

	Wrapper Guide
	unifyfs_check_fns Tool
	Building the GOTCHA List
	Commands to Build Files
	fakechroot_list.txt
	gnulibc_list.txt
	cstdio_list.txt
	unifyfs_list.txt
	unifyfs_unsupported_list.txt

	Adding RPC Functions With Margo Library
	Common
	Server
	Client

	Indices and tables

